用网络改进流行病建模

Ben R. Craig, Thomas M. Phelan, Jan-Peter Siedlarek, J. Steinberg
{"title":"用网络改进流行病建模","authors":"Ben R. Craig, Thomas M. Phelan, Jan-Peter Siedlarek, J. Steinberg","doi":"10.26509/frbc-ec-202023","DOIUrl":null,"url":null,"abstract":"Many of the models used to track, forecast, and inform the response to epidemics such as COVID-19 assume that everyone has an equal chance of encountering those who are infected with a disease. But this assumption does not reflect the fact that individuals interact mostly within much narrower groups. We argue that incorporating a network perspective, which accounts for patterns of real-world interactions, into epidemiological models provides useful insights into the spread of infectious diseases.","PeriodicalId":313912,"journal":{"name":"Economic Commentary (Federal Reserve Bank of Cleveland)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Improving Epidemic Modeling with Networks\",\"authors\":\"Ben R. Craig, Thomas M. Phelan, Jan-Peter Siedlarek, J. Steinberg\",\"doi\":\"10.26509/frbc-ec-202023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the models used to track, forecast, and inform the response to epidemics such as COVID-19 assume that everyone has an equal chance of encountering those who are infected with a disease. But this assumption does not reflect the fact that individuals interact mostly within much narrower groups. We argue that incorporating a network perspective, which accounts for patterns of real-world interactions, into epidemiological models provides useful insights into the spread of infectious diseases.\",\"PeriodicalId\":313912,\"journal\":{\"name\":\"Economic Commentary (Federal Reserve Bank of Cleveland)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Commentary (Federal Reserve Bank of Cleveland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26509/frbc-ec-202023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Commentary (Federal Reserve Bank of Cleveland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26509/frbc-ec-202023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

许多用于跟踪、预测和通报COVID-19等流行病应对措施的模型都假设,每个人都有平等的机会遇到感染某种疾病的人。但这一假设并没有反映出这样一个事实,即个人的互动主要是在更小的群体内进行的。我们认为,将解释现实世界相互作用模式的网络视角纳入流行病学模型,可以为传染病的传播提供有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Epidemic Modeling with Networks
Many of the models used to track, forecast, and inform the response to epidemics such as COVID-19 assume that everyone has an equal chance of encountering those who are infected with a disease. But this assumption does not reflect the fact that individuals interact mostly within much narrower groups. We argue that incorporating a network perspective, which accounts for patterns of real-world interactions, into epidemiological models provides useful insights into the spread of infectious diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信