Stefano Mizzaro, M. Pavan, Ivan Scagnetto, Martino Valenti
{"title":"利用上下文丰富性和外部知识的短文本分类","authors":"Stefano Mizzaro, M. Pavan, Ivan Scagnetto, Martino Valenti","doi":"10.1145/2632188.2632205","DOIUrl":null,"url":null,"abstract":"We address the problem of the categorization of short texts, like those posted by users on social networks and microblogging platforms. We specifically focus on Twitter. Since short texts do not provide sufficient word occurrences, and they often contain abbreviations and acronyms, traditional classification methods such as \"Bag-of-Words\" have limitations. Our proposed method enriches the original text with a new set of words, to add more semantic value by using information extracted from webpages of the same temporal context. Then we use those words to query Wikipedia, as an external knowledge base, with the final goal to categorize the original text using a predefined set of Wikipedia categories. We also present a first experimental evaluation that confirms the effectiveness of the algorithm design and implementation choices, highlighting some critical issues with short texts.","PeriodicalId":178656,"journal":{"name":"Proceedings of the first international workshop on Social media retrieval and analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Short text categorization exploiting contextual enrichment and external knowledge\",\"authors\":\"Stefano Mizzaro, M. Pavan, Ivan Scagnetto, Martino Valenti\",\"doi\":\"10.1145/2632188.2632205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of the categorization of short texts, like those posted by users on social networks and microblogging platforms. We specifically focus on Twitter. Since short texts do not provide sufficient word occurrences, and they often contain abbreviations and acronyms, traditional classification methods such as \\\"Bag-of-Words\\\" have limitations. Our proposed method enriches the original text with a new set of words, to add more semantic value by using information extracted from webpages of the same temporal context. Then we use those words to query Wikipedia, as an external knowledge base, with the final goal to categorize the original text using a predefined set of Wikipedia categories. We also present a first experimental evaluation that confirms the effectiveness of the algorithm design and implementation choices, highlighting some critical issues with short texts.\",\"PeriodicalId\":178656,\"journal\":{\"name\":\"Proceedings of the first international workshop on Social media retrieval and analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the first international workshop on Social media retrieval and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632188.2632205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first international workshop on Social media retrieval and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632188.2632205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short text categorization exploiting contextual enrichment and external knowledge
We address the problem of the categorization of short texts, like those posted by users on social networks and microblogging platforms. We specifically focus on Twitter. Since short texts do not provide sufficient word occurrences, and they often contain abbreviations and acronyms, traditional classification methods such as "Bag-of-Words" have limitations. Our proposed method enriches the original text with a new set of words, to add more semantic value by using information extracted from webpages of the same temporal context. Then we use those words to query Wikipedia, as an external knowledge base, with the final goal to categorize the original text using a predefined set of Wikipedia categories. We also present a first experimental evaluation that confirms the effectiveness of the algorithm design and implementation choices, highlighting some critical issues with short texts.