利用上下文丰富性和外部知识的短文本分类

Stefano Mizzaro, M. Pavan, Ivan Scagnetto, Martino Valenti
{"title":"利用上下文丰富性和外部知识的短文本分类","authors":"Stefano Mizzaro, M. Pavan, Ivan Scagnetto, Martino Valenti","doi":"10.1145/2632188.2632205","DOIUrl":null,"url":null,"abstract":"We address the problem of the categorization of short texts, like those posted by users on social networks and microblogging platforms. We specifically focus on Twitter. Since short texts do not provide sufficient word occurrences, and they often contain abbreviations and acronyms, traditional classification methods such as \"Bag-of-Words\" have limitations. Our proposed method enriches the original text with a new set of words, to add more semantic value by using information extracted from webpages of the same temporal context. Then we use those words to query Wikipedia, as an external knowledge base, with the final goal to categorize the original text using a predefined set of Wikipedia categories. We also present a first experimental evaluation that confirms the effectiveness of the algorithm design and implementation choices, highlighting some critical issues with short texts.","PeriodicalId":178656,"journal":{"name":"Proceedings of the first international workshop on Social media retrieval and analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Short text categorization exploiting contextual enrichment and external knowledge\",\"authors\":\"Stefano Mizzaro, M. Pavan, Ivan Scagnetto, Martino Valenti\",\"doi\":\"10.1145/2632188.2632205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of the categorization of short texts, like those posted by users on social networks and microblogging platforms. We specifically focus on Twitter. Since short texts do not provide sufficient word occurrences, and they often contain abbreviations and acronyms, traditional classification methods such as \\\"Bag-of-Words\\\" have limitations. Our proposed method enriches the original text with a new set of words, to add more semantic value by using information extracted from webpages of the same temporal context. Then we use those words to query Wikipedia, as an external knowledge base, with the final goal to categorize the original text using a predefined set of Wikipedia categories. We also present a first experimental evaluation that confirms the effectiveness of the algorithm design and implementation choices, highlighting some critical issues with short texts.\",\"PeriodicalId\":178656,\"journal\":{\"name\":\"Proceedings of the first international workshop on Social media retrieval and analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the first international workshop on Social media retrieval and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632188.2632205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first international workshop on Social media retrieval and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632188.2632205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们解决了短文本的分类问题,比如用户在社交网络和微博平台上发布的短文本。我们特别关注Twitter。由于短文本没有提供足够的单词出现次数,而且它们经常包含缩写和首字母缩略词,因此传统的分类方法(如“Bag-of-Words”)存在局限性。我们提出的方法利用从同一时间上下文的网页中提取的信息,用一组新的词来丰富原始文本,增加更多的语义价值。然后我们使用这些词来查询维基百科,作为一个外部知识库,最终目标是使用维基百科的预定义分类集对原始文本进行分类。我们还提出了第一个实验评估,证实了算法设计和实现选择的有效性,强调了短文本的一些关键问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short text categorization exploiting contextual enrichment and external knowledge
We address the problem of the categorization of short texts, like those posted by users on social networks and microblogging platforms. We specifically focus on Twitter. Since short texts do not provide sufficient word occurrences, and they often contain abbreviations and acronyms, traditional classification methods such as "Bag-of-Words" have limitations. Our proposed method enriches the original text with a new set of words, to add more semantic value by using information extracted from webpages of the same temporal context. Then we use those words to query Wikipedia, as an external knowledge base, with the final goal to categorize the original text using a predefined set of Wikipedia categories. We also present a first experimental evaluation that confirms the effectiveness of the algorithm design and implementation choices, highlighting some critical issues with short texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信