基于信息的适应度景观和进化布尔综合

A. H. Aguirre, C. C. Coello
{"title":"基于信息的适应度景观和进化布尔综合","authors":"A. H. Aguirre, C. C. Coello","doi":"10.1109/EH.2003.1217636","DOIUrl":null,"url":null,"abstract":"In this paper we show how information theory concepts can be used in evolutionary circuit design and minimization problems. Conditional entropy, mutual information, and normalized mutual information are commonly used to measure or estimate the amount of information shared by two random variables. Although the simple number reported by these measures may guide the evolutionary search, we show that normalized mutual information produces more amenable fitness landscape for search than the others. Several landscape plots and experiments are used to support and explain our main argument.","PeriodicalId":227900,"journal":{"name":"Evolvable Hardware","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fitness Landscape and Evolutionary Boolean Synthesis using Information\",\"authors\":\"A. H. Aguirre, C. C. Coello\",\"doi\":\"10.1109/EH.2003.1217636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show how information theory concepts can be used in evolutionary circuit design and minimization problems. Conditional entropy, mutual information, and normalized mutual information are commonly used to measure or estimate the amount of information shared by two random variables. Although the simple number reported by these measures may guide the evolutionary search, we show that normalized mutual information produces more amenable fitness landscape for search than the others. Several landscape plots and experiments are used to support and explain our main argument.\",\"PeriodicalId\":227900,\"journal\":{\"name\":\"Evolvable Hardware\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2003.1217636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2003.1217636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们展示了如何将信息理论概念用于进化电路设计和最小化问题。条件熵、互信息和归一化互信息通常用于度量或估计两个随机变量共享的信息量。虽然这些测量报告的简单数字可以指导进化搜索,但我们表明,标准化的互信息比其他信息产生更适合搜索的适应度景观。几个景观地块和实验被用来支持和解释我们的主要论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitness Landscape and Evolutionary Boolean Synthesis using Information
In this paper we show how information theory concepts can be used in evolutionary circuit design and minimization problems. Conditional entropy, mutual information, and normalized mutual information are commonly used to measure or estimate the amount of information shared by two random variables. Although the simple number reported by these measures may guide the evolutionary search, we show that normalized mutual information produces more amenable fitness landscape for search than the others. Several landscape plots and experiments are used to support and explain our main argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信