材料涂层PEC物体的电磁散射:混合体积和表面积分方程方法

C. Lu, W. Chew
{"title":"材料涂层PEC物体的电磁散射:混合体积和表面积分方程方法","authors":"C. Lu, W. Chew","doi":"10.1109/APS.1999.789332","DOIUrl":null,"url":null,"abstract":"We propose a hybrid integral equation approach that combines the volume integral equation (VIE) and the surface integral equation to model the mixed dielectric and conducting structures. The volume integral equation is applied to the material region and the surface integral equation (SIE) is enforced over the conducting surface. This results in a very general model as all the volume and surface regions are modeled properly. The advantage of this approach is that in the coated object scattering problem, the coating material can be inhomogeneous, and in the printed circuit and microstrip antenna simulation problem the substrate can be of finite size. Another advantage of this approach is the simplicity of the Green's function in both the VIE and SIE. However the additional cost here is the increase of the number of unknowns since the volume that is occupied by the dielectric material is meshed. This results in a larger memory requirement and longer solution time in solving the MoM matrix equation. But this deficiency can be overcome by applying fast integral equation solvers such as the multilevel fast multipole algorithm. We first give the formulation of the problem using the method of moments (MoM), and then show numerical simulation results to demonstrate the validity of the proposed method.","PeriodicalId":391546,"journal":{"name":"IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Electromagnetic scattering from material coated PEC objects: a hybrid volume and surface integral equation approach\",\"authors\":\"C. Lu, W. Chew\",\"doi\":\"10.1109/APS.1999.789332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a hybrid integral equation approach that combines the volume integral equation (VIE) and the surface integral equation to model the mixed dielectric and conducting structures. The volume integral equation is applied to the material region and the surface integral equation (SIE) is enforced over the conducting surface. This results in a very general model as all the volume and surface regions are modeled properly. The advantage of this approach is that in the coated object scattering problem, the coating material can be inhomogeneous, and in the printed circuit and microstrip antenna simulation problem the substrate can be of finite size. Another advantage of this approach is the simplicity of the Green's function in both the VIE and SIE. However the additional cost here is the increase of the number of unknowns since the volume that is occupied by the dielectric material is meshed. This results in a larger memory requirement and longer solution time in solving the MoM matrix equation. But this deficiency can be overcome by applying fast integral equation solvers such as the multilevel fast multipole algorithm. We first give the formulation of the problem using the method of moments (MoM), and then show numerical simulation results to demonstrate the validity of the proposed method.\",\"PeriodicalId\":391546,\"journal\":{\"name\":\"IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1999.789332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1999.789332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种结合体积积分方程(VIE)和表面积分方程的混合积分方程方法来模拟介电和导电混合结构。在材料区域采用体积积分方程,在导电表面采用表面积分方程(SIE)。这就产生了一个非常通用的模型,因为所有的体积和表面区域都被正确地建模了。这种方法的优点是,在被涂物体散射问题中,涂层材料可以是不均匀的,而在印刷电路和微带天线仿真问题中,衬底可以是有限尺寸的。这种方法的另一个优点是Green函数在VIE和SIE中的简单性。然而,这里的额外成本是未知数量的增加,因为介电材料占用的体积是网格化的。这导致在求解MoM矩阵方程时需要更大的内存和更长的求解时间。但这一缺陷可以通过应用快速积分方程求解器来克服,如多层快速多极算法。首先用矩量法给出了问题的表达式,然后给出了数值仿真结果,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromagnetic scattering from material coated PEC objects: a hybrid volume and surface integral equation approach
We propose a hybrid integral equation approach that combines the volume integral equation (VIE) and the surface integral equation to model the mixed dielectric and conducting structures. The volume integral equation is applied to the material region and the surface integral equation (SIE) is enforced over the conducting surface. This results in a very general model as all the volume and surface regions are modeled properly. The advantage of this approach is that in the coated object scattering problem, the coating material can be inhomogeneous, and in the printed circuit and microstrip antenna simulation problem the substrate can be of finite size. Another advantage of this approach is the simplicity of the Green's function in both the VIE and SIE. However the additional cost here is the increase of the number of unknowns since the volume that is occupied by the dielectric material is meshed. This results in a larger memory requirement and longer solution time in solving the MoM matrix equation. But this deficiency can be overcome by applying fast integral equation solvers such as the multilevel fast multipole algorithm. We first give the formulation of the problem using the method of moments (MoM), and then show numerical simulation results to demonstrate the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信