{"title":"Birkhoff多面体图的独立数及其在最大可恢复码中的应用","authors":"D. Kane, Shachar Lovett, Sankeerth Rao","doi":"10.1109/FOCS.2017.31","DOIUrl":null,"url":null,"abstract":"Maximally recoverable codes are codes designed for distributed storage which combine quick recovery from single node failure and optimal recovery from catastrophic failure. Gopalan et al [SODA 2017] studied the alphabet size needed for such codes in grid topologies and gave a combinatorial characterization for it.Consider a labeling of the edges of the complete bipartite graph K_{n,n} with labels coming from F_2^d, that satisfies the following condition: for any simple cycle, the sum of the labels over its edges is nonzero. The minimal d where this is possible controls the alphabet size needed for maximally recoverable codes in n × n grid topologies.Prior to the current work, it was known that d is between log(n)^2 and n log n. We improve both bounds and show that d is linear in n. The upper bound is a recursive construction which beats the random construction. The lower bound follows by first relating the problem to the independence number of the Birkhoff polytope graph, and then providing tight bounds for it using the representation theory of the symmetric group.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The Independence Number of the Birkhoff Polytope Graph, and Applications to Maximally Recoverable Codes\",\"authors\":\"D. Kane, Shachar Lovett, Sankeerth Rao\",\"doi\":\"10.1109/FOCS.2017.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximally recoverable codes are codes designed for distributed storage which combine quick recovery from single node failure and optimal recovery from catastrophic failure. Gopalan et al [SODA 2017] studied the alphabet size needed for such codes in grid topologies and gave a combinatorial characterization for it.Consider a labeling of the edges of the complete bipartite graph K_{n,n} with labels coming from F_2^d, that satisfies the following condition: for any simple cycle, the sum of the labels over its edges is nonzero. The minimal d where this is possible controls the alphabet size needed for maximally recoverable codes in n × n grid topologies.Prior to the current work, it was known that d is between log(n)^2 and n log n. We improve both bounds and show that d is linear in n. The upper bound is a recursive construction which beats the random construction. The lower bound follows by first relating the problem to the independence number of the Birkhoff polytope graph, and then providing tight bounds for it using the representation theory of the symmetric group.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Independence Number of the Birkhoff Polytope Graph, and Applications to Maximally Recoverable Codes
Maximally recoverable codes are codes designed for distributed storage which combine quick recovery from single node failure and optimal recovery from catastrophic failure. Gopalan et al [SODA 2017] studied the alphabet size needed for such codes in grid topologies and gave a combinatorial characterization for it.Consider a labeling of the edges of the complete bipartite graph K_{n,n} with labels coming from F_2^d, that satisfies the following condition: for any simple cycle, the sum of the labels over its edges is nonzero. The minimal d where this is possible controls the alphabet size needed for maximally recoverable codes in n × n grid topologies.Prior to the current work, it was known that d is between log(n)^2 and n log n. We improve both bounds and show that d is linear in n. The upper bound is a recursive construction which beats the random construction. The lower bound follows by first relating the problem to the independence number of the Birkhoff polytope graph, and then providing tight bounds for it using the representation theory of the symmetric group.