场的相对论论II:汉密尔顿原理与比安奇恒等式

M. Valenzuela
{"title":"场的相对论论II:汉密尔顿原理与比安奇恒等式","authors":"M. Valenzuela","doi":"10.15381/rif.v24i3.14375","DOIUrl":null,"url":null,"abstract":"As gravitation and electromagnetism are closely analogous long-range interactions, and the current formulation of gravitation is given in terms of geometry. Thence emerges a relativistic theory of the field by generalization of the general relativity. The derivation presented shows how naturally we can extend general relativity theory to a non-symmetric field, and that the field-equations are really the generalizations of the gravitational equations. With curvature tensor and the variational principle, we will deduce the field equations and Bianchi's identities. In consecuense, the field equations will find from Bianchi's identities.","PeriodicalId":440559,"journal":{"name":"Revista de Investigación de Física","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A relativistic theory of the field II: Hamilton's principle and Bianchi's identities\",\"authors\":\"M. Valenzuela\",\"doi\":\"10.15381/rif.v24i3.14375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As gravitation and electromagnetism are closely analogous long-range interactions, and the current formulation of gravitation is given in terms of geometry. Thence emerges a relativistic theory of the field by generalization of the general relativity. The derivation presented shows how naturally we can extend general relativity theory to a non-symmetric field, and that the field-equations are really the generalizations of the gravitational equations. With curvature tensor and the variational principle, we will deduce the field equations and Bianchi's identities. In consecuense, the field equations will find from Bianchi's identities.\",\"PeriodicalId\":440559,\"journal\":{\"name\":\"Revista de Investigación de Física\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Investigación de Física\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15381/rif.v24i3.14375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Investigación de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15381/rif.v24i3.14375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于万有引力和电磁学是密切相似的远距离相互作用,目前万有引力的表述是用几何的形式给出的。由此产生了广义相对论的广义场理论。所提出的推导表明,我们可以很自然地将广义相对论扩展到非对称场,而场方程实际上是引力方程的推广。利用曲率张量和变分原理,推导出场方程和Bianchi恒等式。依次,场方程将从Bianchi的恒等式中得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A relativistic theory of the field II: Hamilton's principle and Bianchi's identities
As gravitation and electromagnetism are closely analogous long-range interactions, and the current formulation of gravitation is given in terms of geometry. Thence emerges a relativistic theory of the field by generalization of the general relativity. The derivation presented shows how naturally we can extend general relativity theory to a non-symmetric field, and that the field-equations are really the generalizations of the gravitational equations. With curvature tensor and the variational principle, we will deduce the field equations and Bianchi's identities. In consecuense, the field equations will find from Bianchi's identities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信