{"title":"场的相对论论II:汉密尔顿原理与比安奇恒等式","authors":"M. Valenzuela","doi":"10.15381/rif.v24i3.14375","DOIUrl":null,"url":null,"abstract":"As gravitation and electromagnetism are closely analogous long-range interactions, and the current formulation of gravitation is given in terms of geometry. Thence emerges a relativistic theory of the field by generalization of the general relativity. The derivation presented shows how naturally we can extend general relativity theory to a non-symmetric field, and that the field-equations are really the generalizations of the gravitational equations. With curvature tensor and the variational principle, we will deduce the field equations and Bianchi's identities. In consecuense, the field equations will find from Bianchi's identities.","PeriodicalId":440559,"journal":{"name":"Revista de Investigación de Física","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A relativistic theory of the field II: Hamilton's principle and Bianchi's identities\",\"authors\":\"M. Valenzuela\",\"doi\":\"10.15381/rif.v24i3.14375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As gravitation and electromagnetism are closely analogous long-range interactions, and the current formulation of gravitation is given in terms of geometry. Thence emerges a relativistic theory of the field by generalization of the general relativity. The derivation presented shows how naturally we can extend general relativity theory to a non-symmetric field, and that the field-equations are really the generalizations of the gravitational equations. With curvature tensor and the variational principle, we will deduce the field equations and Bianchi's identities. In consecuense, the field equations will find from Bianchi's identities.\",\"PeriodicalId\":440559,\"journal\":{\"name\":\"Revista de Investigación de Física\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Investigación de Física\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15381/rif.v24i3.14375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Investigación de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15381/rif.v24i3.14375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A relativistic theory of the field II: Hamilton's principle and Bianchi's identities
As gravitation and electromagnetism are closely analogous long-range interactions, and the current formulation of gravitation is given in terms of geometry. Thence emerges a relativistic theory of the field by generalization of the general relativity. The derivation presented shows how naturally we can extend general relativity theory to a non-symmetric field, and that the field-equations are really the generalizations of the gravitational equations. With curvature tensor and the variational principle, we will deduce the field equations and Bianchi's identities. In consecuense, the field equations will find from Bianchi's identities.