ffp致动器在有腿运动机器人中的应用

Mami Nishida, Kazuo Tanaka
{"title":"ffp致动器在有腿运动机器人中的应用","authors":"Mami Nishida, Kazuo Tanaka","doi":"10.1109/IROS.2007.4398975","DOIUrl":null,"url":null,"abstract":"This paper describes an application of flexible flat plate (FFP) actuators (consisting of shape memory alloy (SMA) and polyethylene plate) to some legged locomotion robots. A key feature is that the legged locomotion robots developed in this paper have no joints. In other words, the FFP actuators that become the robot legs (links) can directly generate power by their deflections. In addition, the assembly time of the FFP actuators is short due to their simple structure. After investigating the fundamental properties of the FFP actuators, we propose ten types of FFP-actuators that are available for assembling a wide variety of legged locomotion robots. Two-legged and four-legged locomotion robots developed in this paper realize walking by transferring the elastic potential energy (generated by deflections of the FFP actuators) to kinematic energy. We demonstrate that the leg displacement can be controlled by adjusting the deflection of the FFP actuators with simple ON-OFF signals.","PeriodicalId":227148,"journal":{"name":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of FFP-actuators to legged locomotion robots\",\"authors\":\"Mami Nishida, Kazuo Tanaka\",\"doi\":\"10.1109/IROS.2007.4398975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an application of flexible flat plate (FFP) actuators (consisting of shape memory alloy (SMA) and polyethylene plate) to some legged locomotion robots. A key feature is that the legged locomotion robots developed in this paper have no joints. In other words, the FFP actuators that become the robot legs (links) can directly generate power by their deflections. In addition, the assembly time of the FFP actuators is short due to their simple structure. After investigating the fundamental properties of the FFP actuators, we propose ten types of FFP-actuators that are available for assembling a wide variety of legged locomotion robots. Two-legged and four-legged locomotion robots developed in this paper realize walking by transferring the elastic potential energy (generated by deflections of the FFP actuators) to kinematic energy. We demonstrate that the leg displacement can be controlled by adjusting the deflection of the FFP actuators with simple ON-OFF signals.\",\"PeriodicalId\":227148,\"journal\":{\"name\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2007.4398975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2007.4398975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了由形状记忆合金(SMA)和聚乙烯板组成的柔性平板(FFP)作动器在一些有腿运动机器人中的应用。本文所研制的腿式运动机器人的一个关键特点是无关节。换句话说,成为机器人腿(连杆)的FFP执行器可以直接通过它们的挠度产生能量。此外,FFP执行器结构简单,装配时间短。在研究了FFP致动器的基本特性后,我们提出了十种可用于组装各种有腿运动机器人的FFP致动器。本文研制的两足和四足运动机器人通过将弹性势能(由FFP作动器的挠度产生)转化为运动学能量来实现行走。我们证明了腿部位移可以通过简单的ON-OFF信号来调节FFP执行器的挠度来控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of FFP-actuators to legged locomotion robots
This paper describes an application of flexible flat plate (FFP) actuators (consisting of shape memory alloy (SMA) and polyethylene plate) to some legged locomotion robots. A key feature is that the legged locomotion robots developed in this paper have no joints. In other words, the FFP actuators that become the robot legs (links) can directly generate power by their deflections. In addition, the assembly time of the FFP actuators is short due to their simple structure. After investigating the fundamental properties of the FFP actuators, we propose ten types of FFP-actuators that are available for assembling a wide variety of legged locomotion robots. Two-legged and four-legged locomotion robots developed in this paper realize walking by transferring the elastic potential energy (generated by deflections of the FFP actuators) to kinematic energy. We demonstrate that the leg displacement can be controlled by adjusting the deflection of the FFP actuators with simple ON-OFF signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信