动态时间扭曲:Itakura vs Sakoe-Chiba

Z. Geler, V. Kurbalija, M. Ivanović, Miloš Radovanović, Weihui Dai
{"title":"动态时间扭曲:Itakura vs Sakoe-Chiba","authors":"Z. Geler, V. Kurbalija, M. Ivanović, Miloš Radovanović, Weihui Dai","doi":"10.1109/INISTA.2019.8778300","DOIUrl":null,"url":null,"abstract":"In the domain of time-series classification, one simple but persistently successful method is the 1-nearest neighbour (1NN) classifier coupled with an elastic distance measure such as Dynamic Time Warping (DTW). In this paper we evaluate the performance of DTW when constrained using the Itakura parallelogram, and compare it with the more commonly used Sakoe-Chiba band, as well as with the unconstrained DTW. Results show that although the Itakura parallelogram is generally inferior to the Sakoe-Chiba band, it is still superior to unconstrained DTW. Furthermore, on individual data sets the Itakura parallelogram can produce superior results, warranting further investigation into the merits of its use with DTW and other elastic distance measures for time-series classification.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Dynamic Time Warping: Itakura vs Sakoe-Chiba\",\"authors\":\"Z. Geler, V. Kurbalija, M. Ivanović, Miloš Radovanović, Weihui Dai\",\"doi\":\"10.1109/INISTA.2019.8778300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the domain of time-series classification, one simple but persistently successful method is the 1-nearest neighbour (1NN) classifier coupled with an elastic distance measure such as Dynamic Time Warping (DTW). In this paper we evaluate the performance of DTW when constrained using the Itakura parallelogram, and compare it with the more commonly used Sakoe-Chiba band, as well as with the unconstrained DTW. Results show that although the Itakura parallelogram is generally inferior to the Sakoe-Chiba band, it is still superior to unconstrained DTW. Furthermore, on individual data sets the Itakura parallelogram can produce superior results, warranting further investigation into the merits of its use with DTW and other elastic distance measures for time-series classification.\",\"PeriodicalId\":262143,\"journal\":{\"name\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2019.8778300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在时间序列分类领域,一种简单但持续成功的方法是1-近邻(1NN)分类器与弹性距离度量(如动态时间翘曲(DTW))相结合。在本文中,我们评估了Itakura平行四边形约束下DTW的性能,并将其与更常用的Sakoe-Chiba波段以及无约束DTW进行了比较。结果表明,虽然Itakura平行四边形总体上劣于Sakoe-Chiba波段,但仍优于无约束DTW。此外,在单个数据集上,Itakura平行四边形可以产生更好的结果,值得进一步研究其与DTW和其他弹性距离度量一起用于时间序列分类的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Time Warping: Itakura vs Sakoe-Chiba
In the domain of time-series classification, one simple but persistently successful method is the 1-nearest neighbour (1NN) classifier coupled with an elastic distance measure such as Dynamic Time Warping (DTW). In this paper we evaluate the performance of DTW when constrained using the Itakura parallelogram, and compare it with the more commonly used Sakoe-Chiba band, as well as with the unconstrained DTW. Results show that although the Itakura parallelogram is generally inferior to the Sakoe-Chiba band, it is still superior to unconstrained DTW. Furthermore, on individual data sets the Itakura parallelogram can produce superior results, warranting further investigation into the merits of its use with DTW and other elastic distance measures for time-series classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信