将基于过程的作物模型移植到用于植物模拟的高性能计算环境中

Gang Zhao, Xiaodong Song, Changqing Yan, Qiang Yu
{"title":"将基于过程的作物模型移植到用于植物模拟的高性能计算环境中","authors":"Gang Zhao, Xiaodong Song, Changqing Yan, Qiang Yu","doi":"10.1109/PMA.2012.6524873","DOIUrl":null,"url":null,"abstract":"Increasing concerns about food security have stimulated integrated assessment of the sustainability of agricultural systems at regional, national and global scales with high-resolution. Traditionally, the process-based agricultural models are designed for field scale studies that obtain inputs, run the simulations and provide outputs through the graphic interface. The graphic interface based model dose not suit for modelling practices requiring a large number of simulations. Here, we developed a high performance approach which concurrently executed the Agricultural Production Systems sIMulator (APSIM) simulations using parallel programming techniques. In this approach, an APSIM simulation template with replaceable parameters was firstly designed, and new simulations based on the template was then constructed by dynamically replacing parameters of climate, soil and management options. We parallelized the batched running method in a shared-memory multiprocessor system using Python's Multiprocessing module. We tested the approach with a case study that simulated the productivity of continuous wheat cropping system during 20 years period along the Australian cereal-growing regions under management practices of 5 levels nitrogen application and 3 stubble management practices. More than 170 K runs were finished in 43h by using 64 workers, achieved a speedup ratio of 60. The parallelized method proposed in this study makes large-scale and high-resolution agricultural systems assessment possible.","PeriodicalId":117786,"journal":{"name":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porting a process-based crop model to a high-performance computing environment for plant simulation\",\"authors\":\"Gang Zhao, Xiaodong Song, Changqing Yan, Qiang Yu\",\"doi\":\"10.1109/PMA.2012.6524873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing concerns about food security have stimulated integrated assessment of the sustainability of agricultural systems at regional, national and global scales with high-resolution. Traditionally, the process-based agricultural models are designed for field scale studies that obtain inputs, run the simulations and provide outputs through the graphic interface. The graphic interface based model dose not suit for modelling practices requiring a large number of simulations. Here, we developed a high performance approach which concurrently executed the Agricultural Production Systems sIMulator (APSIM) simulations using parallel programming techniques. In this approach, an APSIM simulation template with replaceable parameters was firstly designed, and new simulations based on the template was then constructed by dynamically replacing parameters of climate, soil and management options. We parallelized the batched running method in a shared-memory multiprocessor system using Python's Multiprocessing module. We tested the approach with a case study that simulated the productivity of continuous wheat cropping system during 20 years period along the Australian cereal-growing regions under management practices of 5 levels nitrogen application and 3 stubble management practices. More than 170 K runs were finished in 43h by using 64 workers, achieved a speedup ratio of 60. The parallelized method proposed in this study makes large-scale and high-resolution agricultural systems assessment possible.\",\"PeriodicalId\":117786,\"journal\":{\"name\":\"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMA.2012.6524873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2012.6524873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对粮食安全的日益关注促使人们在区域、国家和全球范围内以高分辨率对农业系统的可持续性进行综合评估。传统上,基于过程的农业模型是为实地规模的研究而设计的,这些研究通过图形界面获取输入,运行模拟并提供输出。基于图形界面的模型不适合需要大量模拟的建模实践。在这里,我们开发了一种高性能的方法,该方法使用并行编程技术并发执行农业生产系统模拟器(APSIM)模拟。该方法首先设计具有可替换参数的APSIM模拟模板,然后基于模板动态替换气候、土壤和管理选项参数构建新的模拟。我们使用Python的Multiprocessing模块在共享内存多处理器系统中并行化了批处理运行方法。我们通过一个案例研究来验证该方法,该研究模拟了澳大利亚谷物种植区在5个施氮水平和3个留茬管理措施下20年期间小麦连作系统的生产力。使用64名工人,在43小时内完成了170多K的运行,实现了60的加速比。本文提出的并行化方法使大规模、高分辨率的农业系统评估成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Porting a process-based crop model to a high-performance computing environment for plant simulation
Increasing concerns about food security have stimulated integrated assessment of the sustainability of agricultural systems at regional, national and global scales with high-resolution. Traditionally, the process-based agricultural models are designed for field scale studies that obtain inputs, run the simulations and provide outputs through the graphic interface. The graphic interface based model dose not suit for modelling practices requiring a large number of simulations. Here, we developed a high performance approach which concurrently executed the Agricultural Production Systems sIMulator (APSIM) simulations using parallel programming techniques. In this approach, an APSIM simulation template with replaceable parameters was firstly designed, and new simulations based on the template was then constructed by dynamically replacing parameters of climate, soil and management options. We parallelized the batched running method in a shared-memory multiprocessor system using Python's Multiprocessing module. We tested the approach with a case study that simulated the productivity of continuous wheat cropping system during 20 years period along the Australian cereal-growing regions under management practices of 5 levels nitrogen application and 3 stubble management practices. More than 170 K runs were finished in 43h by using 64 workers, achieved a speedup ratio of 60. The parallelized method proposed in this study makes large-scale and high-resolution agricultural systems assessment possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信