鲁棒探地雷达成像的迭代正则化最小绝对偏差算法

M. Ndoye, John M. M. Anderson
{"title":"鲁棒探地雷达成像的迭代正则化最小绝对偏差算法","authors":"M. Ndoye, John M. M. Anderson","doi":"10.1109/CISS.2014.6814099","DOIUrl":null,"url":null,"abstract":"We present an ℓ<sub>1</sub>-regularized least absolute deviation (ℓ<sub>1</sub>-LAD) algorithm for estimating subsurface reflection coefficients from ground penetrating radar (GPR) measurements. The ℓ<sub>1</sub>-regularization incorporates the known sparsity of the reflection coefficients for typical scenes, while the LAD criteria provides robustness against potential outliers/spikes in the data. The majorize-minimize (MM) principle is used to solve the ℓ<sub>1</sub>-LAD optimization problem and the resulting iterative algorithm is straightforward to implement and computationally efficient with judicious data processing and/or parallelization. The ℓ<sub>1</sub>-LAD algorithm is amenable to parallelization because the MM procedure decouples the estimation of the reflection coefficients. The robustness and effectiveness of the proposed ℓ<sub>1</sub>-LAD algorithm is validated using a 1-D time series and simulated GPR dataset.","PeriodicalId":169460,"journal":{"name":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Iterative ℓ1-regularized least absolute deviation algorithm for robust GPR Imaging\",\"authors\":\"M. Ndoye, John M. M. Anderson\",\"doi\":\"10.1109/CISS.2014.6814099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an ℓ<sub>1</sub>-regularized least absolute deviation (ℓ<sub>1</sub>-LAD) algorithm for estimating subsurface reflection coefficients from ground penetrating radar (GPR) measurements. The ℓ<sub>1</sub>-regularization incorporates the known sparsity of the reflection coefficients for typical scenes, while the LAD criteria provides robustness against potential outliers/spikes in the data. The majorize-minimize (MM) principle is used to solve the ℓ<sub>1</sub>-LAD optimization problem and the resulting iterative algorithm is straightforward to implement and computationally efficient with judicious data processing and/or parallelization. The ℓ<sub>1</sub>-LAD algorithm is amenable to parallelization because the MM procedure decouples the estimation of the reflection coefficients. The robustness and effectiveness of the proposed ℓ<sub>1</sub>-LAD algorithm is validated using a 1-D time series and simulated GPR dataset.\",\"PeriodicalId\":169460,\"journal\":{\"name\":\"2014 48th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 48th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2014.6814099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2014.6814099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于估算探地雷达(GPR)测量数据的最小绝对偏差(l_1 - lad)算法。1-正则化结合了典型场景反射系数的已知稀疏性,而LAD标准提供了对数据中潜在异常值/峰值的鲁棒性。采用最大-最小(MM)原理求解l1 - lad优化问题,得到的迭代算法实现简单,计算效率高,数据处理合理,并行化。由于MM过程解耦了反射系数的估计,使得l1 - lad算法易于并行化。利用一维时间序列和模拟GPR数据验证了该算法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Iterative ℓ1-regularized least absolute deviation algorithm for robust GPR Imaging
We present an ℓ1-regularized least absolute deviation (ℓ1-LAD) algorithm for estimating subsurface reflection coefficients from ground penetrating radar (GPR) measurements. The ℓ1-regularization incorporates the known sparsity of the reflection coefficients for typical scenes, while the LAD criteria provides robustness against potential outliers/spikes in the data. The majorize-minimize (MM) principle is used to solve the ℓ1-LAD optimization problem and the resulting iterative algorithm is straightforward to implement and computationally efficient with judicious data processing and/or parallelization. The ℓ1-LAD algorithm is amenable to parallelization because the MM procedure decouples the estimation of the reflection coefficients. The robustness and effectiveness of the proposed ℓ1-LAD algorithm is validated using a 1-D time series and simulated GPR dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信