多级轴流压气机中被冠定子轮毂空腔流动的细节。第1部分:与初级流的相互作用

Nitya Kamdar, Fangyuan Lou, N. Key
{"title":"多级轴流压气机中被冠定子轮毂空腔流动的细节。第1部分:与初级流的相互作用","authors":"Nitya Kamdar, Fangyuan Lou, N. Key","doi":"10.1115/gt2021-60103","DOIUrl":null,"url":null,"abstract":"\n The flow in shrouded stator cavities can be quite complex with axial, radial, and circumferential variations. As the leakage flow recirculates and is re-injected into the main flow path upstream of the stator, it deteriorates the near-hub flow field and, thus, degrades the overall aerodynamic performance of the compressor. In addition, the windage heating in the cavity can raise thermal-mechanical concerns. Fully understanding the details of the shrouded-hub cavity flow in a multi-stage environment can enable better hub cavity designs. Since the majority of the open literature presents limited details about the structure of compressor cavity flows in the stator wells and how the cavity wells affect the leakage flow, there is a lack of wholistic knowledge of how these flow parameters are interdependent. To shed light on this topic, a coupled CFD model with inclusion of the stator cavity wells for the Purdue 3-Stage (P3S) Axial Compressor Research Facility using the PAX100 configuration was developed and validated against experimental data. Such a model not only quantifies the impact of cavity leakage flow on compressor performance, but it also provides the capability to investigate the flow structure details including the path of the fluid into and out of the cavity. With the model in place, in this part 1 paper, the influence of the hub leakage flow on compressor performance and its interactions with the primary flow were investigated by varying the clearance ratio of a single stator. The understanding of the primary-hub-leakage flow interactions can offer insights leading to better designs of hub cavities.","PeriodicalId":257596,"journal":{"name":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Details of Shrouded Stator Hub Cavity Flow in a Multi-Stage Axial Compressor Part 1: Interactions With the Primary Flow\",\"authors\":\"Nitya Kamdar, Fangyuan Lou, N. Key\",\"doi\":\"10.1115/gt2021-60103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The flow in shrouded stator cavities can be quite complex with axial, radial, and circumferential variations. As the leakage flow recirculates and is re-injected into the main flow path upstream of the stator, it deteriorates the near-hub flow field and, thus, degrades the overall aerodynamic performance of the compressor. In addition, the windage heating in the cavity can raise thermal-mechanical concerns. Fully understanding the details of the shrouded-hub cavity flow in a multi-stage environment can enable better hub cavity designs. Since the majority of the open literature presents limited details about the structure of compressor cavity flows in the stator wells and how the cavity wells affect the leakage flow, there is a lack of wholistic knowledge of how these flow parameters are interdependent. To shed light on this topic, a coupled CFD model with inclusion of the stator cavity wells for the Purdue 3-Stage (P3S) Axial Compressor Research Facility using the PAX100 configuration was developed and validated against experimental data. Such a model not only quantifies the impact of cavity leakage flow on compressor performance, but it also provides the capability to investigate the flow structure details including the path of the fluid into and out of the cavity. With the model in place, in this part 1 paper, the influence of the hub leakage flow on compressor performance and its interactions with the primary flow were investigated by varying the clearance ratio of a single stator. The understanding of the primary-hub-leakage flow interactions can offer insights leading to better designs of hub cavities.\",\"PeriodicalId\":257596,\"journal\":{\"name\":\"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-60103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-60103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

带冠定子腔内的流动非常复杂,具有轴向、径向和周向的变化。由于泄漏流再循环并重新注入到定子上游的主流道中,使近轮毂流场恶化,从而降低了压气机的整体气动性能。此外,腔内的风加热会引起热力学问题。在多级环境下,充分了解叶冠-轮毂空腔流动的细节可以更好地设计轮毂空腔。由于大多数公开文献对定子井中的压气机空腔流动结构以及空腔如何影响泄漏流动的细节有限,因此缺乏对这些流动参数如何相互依赖的整体知识。为了阐明这一主题,使用PAX100配置为普渡3级(P3S)轴向压缩机研究设施开发了包含定子空腔井的耦合CFD模型,并根据实验数据进行了验证。该模型不仅量化了空腔泄漏流对压缩机性能的影响,而且还提供了研究流动结构细节的能力,包括流体进出空腔的路径。在此基础上,本文第一部分通过改变单个定子间隙比,研究了轮毂泄漏流对压气机性能的影响及其与一次流的相互作用。对初级轮毂-泄漏流相互作用的理解可以为更好地设计轮毂腔提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Details of Shrouded Stator Hub Cavity Flow in a Multi-Stage Axial Compressor Part 1: Interactions With the Primary Flow
The flow in shrouded stator cavities can be quite complex with axial, radial, and circumferential variations. As the leakage flow recirculates and is re-injected into the main flow path upstream of the stator, it deteriorates the near-hub flow field and, thus, degrades the overall aerodynamic performance of the compressor. In addition, the windage heating in the cavity can raise thermal-mechanical concerns. Fully understanding the details of the shrouded-hub cavity flow in a multi-stage environment can enable better hub cavity designs. Since the majority of the open literature presents limited details about the structure of compressor cavity flows in the stator wells and how the cavity wells affect the leakage flow, there is a lack of wholistic knowledge of how these flow parameters are interdependent. To shed light on this topic, a coupled CFD model with inclusion of the stator cavity wells for the Purdue 3-Stage (P3S) Axial Compressor Research Facility using the PAX100 configuration was developed and validated against experimental data. Such a model not only quantifies the impact of cavity leakage flow on compressor performance, but it also provides the capability to investigate the flow structure details including the path of the fluid into and out of the cavity. With the model in place, in this part 1 paper, the influence of the hub leakage flow on compressor performance and its interactions with the primary flow were investigated by varying the clearance ratio of a single stator. The understanding of the primary-hub-leakage flow interactions can offer insights leading to better designs of hub cavities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信