{"title":"大功率光伏应用中不同多电平变换器拓扑结构的比较研究","authors":"A. Delavari, I. Kamwa, A. Zabihinejad","doi":"10.1109/PEDSTC.2016.7556897","DOIUrl":null,"url":null,"abstract":"This paper investigates the modern topology of multilevel converters, which are suitable for use in high power photovoltaic applications with the focus on achieving lower total harmonic distortion and better efficiency. Multilevel converters offer several advantages compared to conventional types. Multilevel converters provide high quality output while using the low switching frequency. It affects the switching losses, size of semiconductor switches and harmonic filters. This research investigates various topologies of multilevel converter for high power photovoltaic applications and compares their THD, efficiency, number of required semiconductors and other important characteristics. All topologies are simulated using MATLAB/Simulink in the same operating conditions. Finally, the more suitable multilevel topology is selected with respect to the simulation results.","PeriodicalId":307121,"journal":{"name":"2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A comparative study of different multilevel converter topologies for high power photovoltaic applications\",\"authors\":\"A. Delavari, I. Kamwa, A. Zabihinejad\",\"doi\":\"10.1109/PEDSTC.2016.7556897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the modern topology of multilevel converters, which are suitable for use in high power photovoltaic applications with the focus on achieving lower total harmonic distortion and better efficiency. Multilevel converters offer several advantages compared to conventional types. Multilevel converters provide high quality output while using the low switching frequency. It affects the switching losses, size of semiconductor switches and harmonic filters. This research investigates various topologies of multilevel converter for high power photovoltaic applications and compares their THD, efficiency, number of required semiconductors and other important characteristics. All topologies are simulated using MATLAB/Simulink in the same operating conditions. Finally, the more suitable multilevel topology is selected with respect to the simulation results.\",\"PeriodicalId\":307121,\"journal\":{\"name\":\"2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDSTC.2016.7556897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC.2016.7556897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative study of different multilevel converter topologies for high power photovoltaic applications
This paper investigates the modern topology of multilevel converters, which are suitable for use in high power photovoltaic applications with the focus on achieving lower total harmonic distortion and better efficiency. Multilevel converters offer several advantages compared to conventional types. Multilevel converters provide high quality output while using the low switching frequency. It affects the switching losses, size of semiconductor switches and harmonic filters. This research investigates various topologies of multilevel converter for high power photovoltaic applications and compares their THD, efficiency, number of required semiconductors and other important characteristics. All topologies are simulated using MATLAB/Simulink in the same operating conditions. Finally, the more suitable multilevel topology is selected with respect to the simulation results.