强化学习,粒子滤波和EM算法

V. Borkar, Ankush Jain
{"title":"强化学习,粒子滤波和EM算法","authors":"V. Borkar, Ankush Jain","doi":"10.1109/ITA.2014.6804269","DOIUrl":null,"url":null,"abstract":"We consider a parameter estimation problem for a Hidden Markov Model in the framework of particle filters. Using constructs from reinforcement learning for variance reduction in particle filters, a simulation based scheme is developed for estimating the partially observed log-likelihood function. A Kiefer-Wolfowitz like stochastic approximation scheme maximizes this function over the unknown parameter. The two procedures are performed on two different time scales, emulating the alternating `expectation' and `maximization' operations of the EM algorithm. Numerical experiments are presented in support of the proposed scheme.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reinforcement learning, particle filters and the EM algorithm\",\"authors\":\"V. Borkar, Ankush Jain\",\"doi\":\"10.1109/ITA.2014.6804269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a parameter estimation problem for a Hidden Markov Model in the framework of particle filters. Using constructs from reinforcement learning for variance reduction in particle filters, a simulation based scheme is developed for estimating the partially observed log-likelihood function. A Kiefer-Wolfowitz like stochastic approximation scheme maximizes this function over the unknown parameter. The two procedures are performed on two different time scales, emulating the alternating `expectation' and `maximization' operations of the EM algorithm. Numerical experiments are presented in support of the proposed scheme.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了粒子滤波框架下隐马尔可夫模型的参数估计问题。利用粒子滤波器中用于减少方差的强化学习构造,开发了一种基于模拟的方案来估计部分观测到的对数似然函数。基弗-沃尔福威茨式随机逼近方案在未知参数上最大化该函数。这两个过程在两个不同的时间尺度上执行,模拟EM算法的交替“期望”和“最大化”操作。数值实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning, particle filters and the EM algorithm
We consider a parameter estimation problem for a Hidden Markov Model in the framework of particle filters. Using constructs from reinforcement learning for variance reduction in particle filters, a simulation based scheme is developed for estimating the partially observed log-likelihood function. A Kiefer-Wolfowitz like stochastic approximation scheme maximizes this function over the unknown parameter. The two procedures are performed on two different time scales, emulating the alternating `expectation' and `maximization' operations of the EM algorithm. Numerical experiments are presented in support of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信