中国家谱知识图谱

Xindong Wu, Tingting Jiang, Yi Zhu, Chenyang Bu
{"title":"中国家谱知识图谱","authors":"Xindong Wu, Tingting Jiang, Yi Zhu, Chenyang Bu","doi":"10.1109/ICBK50248.2020.00080","DOIUrl":null,"url":null,"abstract":"Genealogical knowledge graphs depict the relationships of family networks and the development of family histories. They can help researchers to analyze and understand genealogical data, search for genealogical roots, and explore the origins of a family more easily. However, the multi-type, multisource dynamic changes and specialized nature of genealogical data bring challenges to the development of contemporary knowledge graph models. Applying existing methods to genealogical data can result in problems of overlooking certain specialized vocabulary and dynamic properties such as personal experiences. In this paper, we propose a genealogical knowledge graph model GKGM that combines HAO intelligence (h uman intelligence + a rtificial intelligence + o rganizational intelligence) and ontology granularity division technology to address the above problems. Furthermore, a method of applying the model to construct genealogical knowledge graphs is demonstrated, and an experiment conducted on a real-world genealogical dataset verifies the feasibility and effectiveness of the model.","PeriodicalId":432857,"journal":{"name":"2020 IEEE International Conference on Knowledge Graph (ICKG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Knowledge Graph for China’s Genealogy\",\"authors\":\"Xindong Wu, Tingting Jiang, Yi Zhu, Chenyang Bu\",\"doi\":\"10.1109/ICBK50248.2020.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genealogical knowledge graphs depict the relationships of family networks and the development of family histories. They can help researchers to analyze and understand genealogical data, search for genealogical roots, and explore the origins of a family more easily. However, the multi-type, multisource dynamic changes and specialized nature of genealogical data bring challenges to the development of contemporary knowledge graph models. Applying existing methods to genealogical data can result in problems of overlooking certain specialized vocabulary and dynamic properties such as personal experiences. In this paper, we propose a genealogical knowledge graph model GKGM that combines HAO intelligence (h uman intelligence + a rtificial intelligence + o rganizational intelligence) and ontology granularity division technology to address the above problems. Furthermore, a method of applying the model to construct genealogical knowledge graphs is demonstrated, and an experiment conducted on a real-world genealogical dataset verifies the feasibility and effectiveness of the model.\",\"PeriodicalId\":432857,\"journal\":{\"name\":\"2020 IEEE International Conference on Knowledge Graph (ICKG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Knowledge Graph (ICKG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK50248.2020.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Knowledge Graph (ICKG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK50248.2020.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

家谱知识图描述了家庭网络的关系和家族史的发展。它们可以帮助研究者更容易地分析和理解家谱数据,寻找家谱根源,探索一个家族的起源。然而,家谱数据的多类型、多来源的动态变化和专业化给当代知识图谱模型的发展带来了挑战。将现有方法应用于家谱数据可能会导致忽视某些专业词汇和动态属性(如个人经历)的问题。本文提出了一种结合HAO智能(人类智能+人工智能+组织智能)和本体粒度划分技术的系谱知识图谱模型GKGM来解决上述问题。在此基础上,提出了一种应用该模型构建家谱知识图谱的方法,并在实际家谱数据集上进行了实验,验证了该模型的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Graph for China’s Genealogy
Genealogical knowledge graphs depict the relationships of family networks and the development of family histories. They can help researchers to analyze and understand genealogical data, search for genealogical roots, and explore the origins of a family more easily. However, the multi-type, multisource dynamic changes and specialized nature of genealogical data bring challenges to the development of contemporary knowledge graph models. Applying existing methods to genealogical data can result in problems of overlooking certain specialized vocabulary and dynamic properties such as personal experiences. In this paper, we propose a genealogical knowledge graph model GKGM that combines HAO intelligence (h uman intelligence + a rtificial intelligence + o rganizational intelligence) and ontology granularity division technology to address the above problems. Furthermore, a method of applying the model to construct genealogical knowledge graphs is demonstrated, and an experiment conducted on a real-world genealogical dataset verifies the feasibility and effectiveness of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信