考虑环境变化的多变量信号贝叶斯分类器

Itaru Aso, K. Okuhara
{"title":"考虑环境变化的多变量信号贝叶斯分类器","authors":"Itaru Aso, K. Okuhara","doi":"10.1109/ICAIIC.2019.8668977","DOIUrl":null,"url":null,"abstract":"In this paper, we suggest learning algorithm of a high precision classifier for multivariate signal. The method deals with environmental influences. In this proposal technique, we define the features of the classification target and the environment as population parameters of probability distribution. We estimate the parameters by using the Bayesian inference. The Bayesian decision rule is used for the selection of similar environment properly in the proposed method. We try to evaluate the influence of the environmental change. In the numerical experiments, we verify that the proposed method has high classification accuracy. As the results, we show that our method can adapt environmental influence.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayes Classifier Considering Environmental Change for Multivariate Signal Data\",\"authors\":\"Itaru Aso, K. Okuhara\",\"doi\":\"10.1109/ICAIIC.2019.8668977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we suggest learning algorithm of a high precision classifier for multivariate signal. The method deals with environmental influences. In this proposal technique, we define the features of the classification target and the environment as population parameters of probability distribution. We estimate the parameters by using the Bayesian inference. The Bayesian decision rule is used for the selection of similar environment properly in the proposed method. We try to evaluate the influence of the environmental change. In the numerical experiments, we verify that the proposed method has high classification accuracy. As the results, we show that our method can adapt environmental influence.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8668977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8668977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高精度多变量信号分类器的学习算法。该方法处理环境影响。在该方法中,我们将分类目标和环境的特征定义为概率分布的总体参数。我们使用贝叶斯推理来估计参数。该方法将贝叶斯决策规则用于相似环境的选择。我们试图评估环境变化的影响。通过数值实验验证了该方法具有较高的分类精度。结果表明,该方法能够适应环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayes Classifier Considering Environmental Change for Multivariate Signal Data
In this paper, we suggest learning algorithm of a high precision classifier for multivariate signal. The method deals with environmental influences. In this proposal technique, we define the features of the classification target and the environment as population parameters of probability distribution. We estimate the parameters by using the Bayesian inference. The Bayesian decision rule is used for the selection of similar environment properly in the proposed method. We try to evaluate the influence of the environmental change. In the numerical experiments, we verify that the proposed method has high classification accuracy. As the results, we show that our method can adapt environmental influence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信