M. S. Moghaddam, B. Harris, Duseok Kang, Inpyo Bae, Euiseok Kim, Hyemi Min, Hansu Cho, Sukjin Kim, Bernhard Egger, S. Ha, Kiyoung Choi
{"title":"针对用户定制的cnn增量训练:正在进行中","authors":"M. S. Moghaddam, B. Harris, Duseok Kang, Inpyo Bae, Euiseok Kim, Hyemi Min, Hansu Cho, Sukjin Kim, Bernhard Egger, S. Ha, Kiyoung Choi","doi":"10.1145/3125501.3125519","DOIUrl":null,"url":null,"abstract":"This paper presents a convolutional neural network architecture that supports transfer learning for user customization. The architecture consists of a large basic inference engine and a small augmenting engine. Initially, both engines are trained using a large dataset. Only the augmenting engine is tuned to the user-specific dataset. To preserve the accuracy for the original dataset, the novel concept of quality factor is proposed. The final network is evaluated with the Caffe framework, and our own implementation on a coarse-grained reconfigurable array (CGRA) processor. Experiments with MNIST, NIST'19, and our user-specific datasets show the effectiveness of the proposed approach and the potential of CGRAs as DNN processors.","PeriodicalId":259093,"journal":{"name":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental training of CNNs for user customization: work-in-progress\",\"authors\":\"M. S. Moghaddam, B. Harris, Duseok Kang, Inpyo Bae, Euiseok Kim, Hyemi Min, Hansu Cho, Sukjin Kim, Bernhard Egger, S. Ha, Kiyoung Choi\",\"doi\":\"10.1145/3125501.3125519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a convolutional neural network architecture that supports transfer learning for user customization. The architecture consists of a large basic inference engine and a small augmenting engine. Initially, both engines are trained using a large dataset. Only the augmenting engine is tuned to the user-specific dataset. To preserve the accuracy for the original dataset, the novel concept of quality factor is proposed. The final network is evaluated with the Caffe framework, and our own implementation on a coarse-grained reconfigurable array (CGRA) processor. Experiments with MNIST, NIST'19, and our user-specific datasets show the effectiveness of the proposed approach and the potential of CGRAs as DNN processors.\",\"PeriodicalId\":259093,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3125501.3125519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125501.3125519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incremental training of CNNs for user customization: work-in-progress
This paper presents a convolutional neural network architecture that supports transfer learning for user customization. The architecture consists of a large basic inference engine and a small augmenting engine. Initially, both engines are trained using a large dataset. Only the augmenting engine is tuned to the user-specific dataset. To preserve the accuracy for the original dataset, the novel concept of quality factor is proposed. The final network is evaluated with the Caffe framework, and our own implementation on a coarse-grained reconfigurable array (CGRA) processor. Experiments with MNIST, NIST'19, and our user-specific datasets show the effectiveness of the proposed approach and the potential of CGRAs as DNN processors.