针对用户定制的cnn增量训练:正在进行中

M. S. Moghaddam, B. Harris, Duseok Kang, Inpyo Bae, Euiseok Kim, Hyemi Min, Hansu Cho, Sukjin Kim, Bernhard Egger, S. Ha, Kiyoung Choi
{"title":"针对用户定制的cnn增量训练:正在进行中","authors":"M. S. Moghaddam, B. Harris, Duseok Kang, Inpyo Bae, Euiseok Kim, Hyemi Min, Hansu Cho, Sukjin Kim, Bernhard Egger, S. Ha, Kiyoung Choi","doi":"10.1145/3125501.3125519","DOIUrl":null,"url":null,"abstract":"This paper presents a convolutional neural network architecture that supports transfer learning for user customization. The architecture consists of a large basic inference engine and a small augmenting engine. Initially, both engines are trained using a large dataset. Only the augmenting engine is tuned to the user-specific dataset. To preserve the accuracy for the original dataset, the novel concept of quality factor is proposed. The final network is evaluated with the Caffe framework, and our own implementation on a coarse-grained reconfigurable array (CGRA) processor. Experiments with MNIST, NIST'19, and our user-specific datasets show the effectiveness of the proposed approach and the potential of CGRAs as DNN processors.","PeriodicalId":259093,"journal":{"name":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental training of CNNs for user customization: work-in-progress\",\"authors\":\"M. S. Moghaddam, B. Harris, Duseok Kang, Inpyo Bae, Euiseok Kim, Hyemi Min, Hansu Cho, Sukjin Kim, Bernhard Egger, S. Ha, Kiyoung Choi\",\"doi\":\"10.1145/3125501.3125519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a convolutional neural network architecture that supports transfer learning for user customization. The architecture consists of a large basic inference engine and a small augmenting engine. Initially, both engines are trained using a large dataset. Only the augmenting engine is tuned to the user-specific dataset. To preserve the accuracy for the original dataset, the novel concept of quality factor is proposed. The final network is evaluated with the Caffe framework, and our own implementation on a coarse-grained reconfigurable array (CGRA) processor. Experiments with MNIST, NIST'19, and our user-specific datasets show the effectiveness of the proposed approach and the potential of CGRAs as DNN processors.\",\"PeriodicalId\":259093,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3125501.3125519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125501.3125519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种支持用户自定义迁移学习的卷积神经网络体系结构。该架构由一个大型的基本推理引擎和一个小型的增强引擎组成。最初,两个引擎都使用大型数据集进行训练。只有扩展引擎会调优到特定于用户的数据集。为了保持原始数据集的准确性,提出了质量因子的新概念。最终的网络是用Caffe框架和我们自己在粗粒度可重构阵列(CGRA)处理器上的实现来评估的。使用MNIST、NIST'19和我们的用户特定数据集进行的实验显示了所提出方法的有效性以及CGRAs作为DNN处理器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental training of CNNs for user customization: work-in-progress
This paper presents a convolutional neural network architecture that supports transfer learning for user customization. The architecture consists of a large basic inference engine and a small augmenting engine. Initially, both engines are trained using a large dataset. Only the augmenting engine is tuned to the user-specific dataset. To preserve the accuracy for the original dataset, the novel concept of quality factor is proposed. The final network is evaluated with the Caffe framework, and our own implementation on a coarse-grained reconfigurable array (CGRA) processor. Experiments with MNIST, NIST'19, and our user-specific datasets show the effectiveness of the proposed approach and the potential of CGRAs as DNN processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信