F. Amaro, M. Gomez‐Mendoza, Ana B. Descalzo, Luis Rivas, G. Orellana
{"title":"自消毒光激活导尿管预防医院感染","authors":"F. Amaro, M. Gomez‐Mendoza, Ana B. Descalzo, Luis Rivas, G. Orellana","doi":"10.1117/12.2525896","DOIUrl":null,"url":null,"abstract":"Bacterial colonization and biofilm formation on catheters are the primary causes of nosocomial infections and entails a limitation for their long-term use, often requiring catheter removal. Ca. 80% of the urinary tract infections contracted by patients in hospitals are catheter-associated, leading to substantial morbidity, mortality and higher costs. The increase of multi-drug resistant bacteria has created an urgent need for new strategies to prevent biofilm formation on catheters and antimicrobial photodynamic inactivation (aPDI) appears to be a promising approach. We have developed (patent pending) self-sterilizing silicone catheters with a covalently attached layer of photosensitizer (PS) that shows strong antibacterial effect in vitro against a panel of bacterial species commonly related to catheter-associated infections such as Pseudomonas aeruginosa and Staphylococcus epidermidis. Illumination with a 532 nm diode laser light of the PSderivatized catheter surfaces induced killing of 99-99.9% of the bacterial biofilm attached to it. The population survival decreased to a negligible level after 60 min of illumination and no significant decrease of the bacterial viability was observed in the absence of either light or PS. Time-resolved luminescence measurements with detection at 1265 nm confirmed generation of singlet molecular oxygen (1O2) only in PS-derivatized catheters upon illumination, paving the way for future applications to reduce the occurrence of catheter-associated urinary tract infections.","PeriodicalId":267589,"journal":{"name":"World Congress of the International Photodynamic Association","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-sterilizing photoactivated catheters to prevent nosocomial infections\",\"authors\":\"F. Amaro, M. Gomez‐Mendoza, Ana B. Descalzo, Luis Rivas, G. Orellana\",\"doi\":\"10.1117/12.2525896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial colonization and biofilm formation on catheters are the primary causes of nosocomial infections and entails a limitation for their long-term use, often requiring catheter removal. Ca. 80% of the urinary tract infections contracted by patients in hospitals are catheter-associated, leading to substantial morbidity, mortality and higher costs. The increase of multi-drug resistant bacteria has created an urgent need for new strategies to prevent biofilm formation on catheters and antimicrobial photodynamic inactivation (aPDI) appears to be a promising approach. We have developed (patent pending) self-sterilizing silicone catheters with a covalently attached layer of photosensitizer (PS) that shows strong antibacterial effect in vitro against a panel of bacterial species commonly related to catheter-associated infections such as Pseudomonas aeruginosa and Staphylococcus epidermidis. Illumination with a 532 nm diode laser light of the PSderivatized catheter surfaces induced killing of 99-99.9% of the bacterial biofilm attached to it. The population survival decreased to a negligible level after 60 min of illumination and no significant decrease of the bacterial viability was observed in the absence of either light or PS. Time-resolved luminescence measurements with detection at 1265 nm confirmed generation of singlet molecular oxygen (1O2) only in PS-derivatized catheters upon illumination, paving the way for future applications to reduce the occurrence of catheter-associated urinary tract infections.\",\"PeriodicalId\":267589,\"journal\":{\"name\":\"World Congress of the International Photodynamic Association\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Congress of the International Photodynamic Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2525896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Congress of the International Photodynamic Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2525896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-sterilizing photoactivated catheters to prevent nosocomial infections
Bacterial colonization and biofilm formation on catheters are the primary causes of nosocomial infections and entails a limitation for their long-term use, often requiring catheter removal. Ca. 80% of the urinary tract infections contracted by patients in hospitals are catheter-associated, leading to substantial morbidity, mortality and higher costs. The increase of multi-drug resistant bacteria has created an urgent need for new strategies to prevent biofilm formation on catheters and antimicrobial photodynamic inactivation (aPDI) appears to be a promising approach. We have developed (patent pending) self-sterilizing silicone catheters with a covalently attached layer of photosensitizer (PS) that shows strong antibacterial effect in vitro against a panel of bacterial species commonly related to catheter-associated infections such as Pseudomonas aeruginosa and Staphylococcus epidermidis. Illumination with a 532 nm diode laser light of the PSderivatized catheter surfaces induced killing of 99-99.9% of the bacterial biofilm attached to it. The population survival decreased to a negligible level after 60 min of illumination and no significant decrease of the bacterial viability was observed in the absence of either light or PS. Time-resolved luminescence measurements with detection at 1265 nm confirmed generation of singlet molecular oxygen (1O2) only in PS-derivatized catheters upon illumination, paving the way for future applications to reduce the occurrence of catheter-associated urinary tract infections.