使用GNU无线电、keras和HackRF进行调制识别

Jack L. Ziegler, Robert T. Arn, W. Chambers
{"title":"使用GNU无线电、keras和HackRF进行调制识别","authors":"Jack L. Ziegler, Robert T. Arn, W. Chambers","doi":"10.1109/DySPAN.2017.7920747","DOIUrl":null,"url":null,"abstract":"Recognition and classification of the modulation format of received signals in real time is a challenging but necessary task for the intelligence community. Without prior knowledge of the received data, such as power, frequency, and phase, coupled with real-world concerns such as signal degradation and interference, the task of reconstructing the sent information is made even more complex. Our approach for classifying modulation types of live over-the-air signals, a precursor step to demodulation, involves using software defined radio plus two simple and inexpensive transceivers to train a series of neural networks over a set of three data types.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Modulation recognition with GNU radio, keras, and HackRF\",\"authors\":\"Jack L. Ziegler, Robert T. Arn, W. Chambers\",\"doi\":\"10.1109/DySPAN.2017.7920747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition and classification of the modulation format of received signals in real time is a challenging but necessary task for the intelligence community. Without prior knowledge of the received data, such as power, frequency, and phase, coupled with real-world concerns such as signal degradation and interference, the task of reconstructing the sent information is made even more complex. Our approach for classifying modulation types of live over-the-air signals, a precursor step to demodulation, involves using software defined radio plus two simple and inexpensive transceivers to train a series of neural networks over a set of three data types.\",\"PeriodicalId\":221877,\"journal\":{\"name\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DySPAN.2017.7920747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

对接收信号的调制格式进行实时识别和分类是一项具有挑战性但又十分必要的任务。如果事先不知道接收到的数据,如功率、频率和相位,再加上现实世界的问题,如信号退化和干扰,重建发送信息的任务变得更加复杂。我们对实时无线信号的调制类型进行分类的方法,是解调的先驱步骤,包括使用软件定义的无线电加上两个简单而廉价的收发器,在一组三种数据类型上训练一系列神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation recognition with GNU radio, keras, and HackRF
Recognition and classification of the modulation format of received signals in real time is a challenging but necessary task for the intelligence community. Without prior knowledge of the received data, such as power, frequency, and phase, coupled with real-world concerns such as signal degradation and interference, the task of reconstructing the sent information is made even more complex. Our approach for classifying modulation types of live over-the-air signals, a precursor step to demodulation, involves using software defined radio plus two simple and inexpensive transceivers to train a series of neural networks over a set of three data types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信