基于机器学习的工业资产预测维护算法

Angel J. Alfaro-Nango, E. Escobar-Gómez, Eduardo Chandomí-Castellanos, S. Velázquez-Trujillo, Héctor R. Hernández De León, L. M. Blanco-González
{"title":"基于机器学习的工业资产预测维护算法","authors":"Angel J. Alfaro-Nango, E. Escobar-Gómez, Eduardo Chandomí-Castellanos, S. Velázquez-Trujillo, Héctor R. Hernández De León, L. M. Blanco-González","doi":"10.1109/CoDIT55151.2022.9803983","DOIUrl":null,"url":null,"abstract":"This article proposes a predictive maintenance algorithm based on machine learning to predict the remaining useful life of industrial assets. The synthetic dataset N-CMAPSS was used, which contains a performance degradation dataset until the presence of failure of an aircraft fleet under real flight conditions is detected. The principal element of maintenance focuses on the predictability of the remaining useful life; predictive models need performance information of an asset from the beginning to failure. [1]. The approach considers the data analysis to understand the data behavior. Monotonicity and principal component analysis are applied in the variable selection. Furthermore, convolutional neural networks are integrated to predict the remaining useful life, resulting in a 10.91 mean of RSME. The “DS01” dataset was used for training; six engines were used for the training dataset and the remaining four for the test dataset.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Maintenance Algorithm Based on Machine Learning for Industrial Asset\",\"authors\":\"Angel J. Alfaro-Nango, E. Escobar-Gómez, Eduardo Chandomí-Castellanos, S. Velázquez-Trujillo, Héctor R. Hernández De León, L. M. Blanco-González\",\"doi\":\"10.1109/CoDIT55151.2022.9803983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a predictive maintenance algorithm based on machine learning to predict the remaining useful life of industrial assets. The synthetic dataset N-CMAPSS was used, which contains a performance degradation dataset until the presence of failure of an aircraft fleet under real flight conditions is detected. The principal element of maintenance focuses on the predictability of the remaining useful life; predictive models need performance information of an asset from the beginning to failure. [1]. The approach considers the data analysis to understand the data behavior. Monotonicity and principal component analysis are applied in the variable selection. Furthermore, convolutional neural networks are integrated to predict the remaining useful life, resulting in a 10.91 mean of RSME. The “DS01” dataset was used for training; six engines were used for the training dataset and the remaining four for the test dataset.\",\"PeriodicalId\":185510,\"journal\":{\"name\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT55151.2022.9803983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9803983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于机器学习的预测维护算法来预测工业资产的剩余使用寿命。使用合成数据集N-CMAPSS,其中包含性能退化数据集,直到检测到飞机在真实飞行条件下存在故障。维修的主要内容是剩余使用寿命的可预测性;预测模型需要资产从开始到失效的性能信息。[1]。该方法考虑数据分析来理解数据行为。在变量选择中应用了单调性分析和主成分分析。此外,利用卷积神经网络对剩余使用寿命进行了预测,得到的rsrme均值为10.91。使用“DS01”数据集进行训练;6个引擎用于训练数据集,其余4个用于测试数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Maintenance Algorithm Based on Machine Learning for Industrial Asset
This article proposes a predictive maintenance algorithm based on machine learning to predict the remaining useful life of industrial assets. The synthetic dataset N-CMAPSS was used, which contains a performance degradation dataset until the presence of failure of an aircraft fleet under real flight conditions is detected. The principal element of maintenance focuses on the predictability of the remaining useful life; predictive models need performance information of an asset from the beginning to failure. [1]. The approach considers the data analysis to understand the data behavior. Monotonicity and principal component analysis are applied in the variable selection. Furthermore, convolutional neural networks are integrated to predict the remaining useful life, resulting in a 10.91 mean of RSME. The “DS01” dataset was used for training; six engines were used for the training dataset and the remaining four for the test dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信