Kathy Macropol, Petko Bogdanov, Ambuj K. Singh, L. Petzold, Xifeng Yan
{"title":"我行动,因此我判断:基于用户活动变化的网络情绪动态","authors":"Kathy Macropol, Petko Bogdanov, Ambuj K. Singh, L. Petzold, Xifeng Yan","doi":"10.1145/2492517.2492623","DOIUrl":null,"url":null,"abstract":"The study of influence, persuasion, and user sentiment dynamics within online communities has recently emerged as a highly active area of research. In this paper, we focus on analyzing and modeling user sentiment dynamics within a real-world social media such as Twitter. Beyond text and connectivity, we are interested in exploring the level of topical user posting activity and its effect on sentiment change. We perform topic-wise analysis of tweeting behavior that reveals a strong relationship between users' activity acceleration and topic sentiment change. Inspired by this empirical observation, we develop a new generative and predictive model that extends classical neighborhood-based influence propagation with the notion of user activation. We fit the parameters of our model to a large, real-world Twitter dataset and evaluate its utility to predict future sentiment change. Our model outperforms significantly (1 order of magnitude in accuracy) existing alternatives in identifying the individuals who are most likely to change sentiment based on past information. When predicting the next sentiment of users who actually change their opinion (a relatively rare event), our model is twice more accurate than alternatives, while its overall network accuracy is 94% on average. We also study the effect of inactive users on consensus efficiency in the opinion dynamics process both analytically and in simulation within the context of our model.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"I act, therefore I judge: Network sentiment dynamics based on user activity change\",\"authors\":\"Kathy Macropol, Petko Bogdanov, Ambuj K. Singh, L. Petzold, Xifeng Yan\",\"doi\":\"10.1145/2492517.2492623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of influence, persuasion, and user sentiment dynamics within online communities has recently emerged as a highly active area of research. In this paper, we focus on analyzing and modeling user sentiment dynamics within a real-world social media such as Twitter. Beyond text and connectivity, we are interested in exploring the level of topical user posting activity and its effect on sentiment change. We perform topic-wise analysis of tweeting behavior that reveals a strong relationship between users' activity acceleration and topic sentiment change. Inspired by this empirical observation, we develop a new generative and predictive model that extends classical neighborhood-based influence propagation with the notion of user activation. We fit the parameters of our model to a large, real-world Twitter dataset and evaluate its utility to predict future sentiment change. Our model outperforms significantly (1 order of magnitude in accuracy) existing alternatives in identifying the individuals who are most likely to change sentiment based on past information. When predicting the next sentiment of users who actually change their opinion (a relatively rare event), our model is twice more accurate than alternatives, while its overall network accuracy is 94% on average. We also study the effect of inactive users on consensus efficiency in the opinion dynamics process both analytically and in simulation within the context of our model.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2492623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
I act, therefore I judge: Network sentiment dynamics based on user activity change
The study of influence, persuasion, and user sentiment dynamics within online communities has recently emerged as a highly active area of research. In this paper, we focus on analyzing and modeling user sentiment dynamics within a real-world social media such as Twitter. Beyond text and connectivity, we are interested in exploring the level of topical user posting activity and its effect on sentiment change. We perform topic-wise analysis of tweeting behavior that reveals a strong relationship between users' activity acceleration and topic sentiment change. Inspired by this empirical observation, we develop a new generative and predictive model that extends classical neighborhood-based influence propagation with the notion of user activation. We fit the parameters of our model to a large, real-world Twitter dataset and evaluate its utility to predict future sentiment change. Our model outperforms significantly (1 order of magnitude in accuracy) existing alternatives in identifying the individuals who are most likely to change sentiment based on past information. When predicting the next sentiment of users who actually change their opinion (a relatively rare event), our model is twice more accurate than alternatives, while its overall network accuracy is 94% on average. We also study the effect of inactive users on consensus efficiency in the opinion dynamics process both analytically and in simulation within the context of our model.