通过情景方法的机会约束单元承诺

Xinbo Geng, Le Xie
{"title":"通过情景方法的机会约束单元承诺","authors":"Xinbo Geng, Le Xie","doi":"10.1109/NAPS46351.2019.9000192","DOIUrl":null,"url":null,"abstract":"Keeping the balance between supply and demand is a fundamental task in power system operational planning practices. This task becomes particularly challenging due to the deepening penetration of renewable energy resources, which induces a significant amount of uncertainties. In this paper, we propose a chance-constrained Unit Commitment (c-UC) framework to tackle challenges from uncertainties of renewables. The proposed c-UC framework seeks cost-efficient scheduling of generators while ensuring operation constraints with guaranteed probability. We show that the scenario approach can be used to solve c-UC despite of the non-convexity from binary decision variables. We reveal the salient structural properties of c-UC, which could significantly reduce the sample complexity required by the scenario approach and speed up computation. Case studies are performed on a modified 118-bus system.","PeriodicalId":175719,"journal":{"name":"2019 North American Power Symposium (NAPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Chance-constrained Unit Commitment via the Scenario Approach\",\"authors\":\"Xinbo Geng, Le Xie\",\"doi\":\"10.1109/NAPS46351.2019.9000192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keeping the balance between supply and demand is a fundamental task in power system operational planning practices. This task becomes particularly challenging due to the deepening penetration of renewable energy resources, which induces a significant amount of uncertainties. In this paper, we propose a chance-constrained Unit Commitment (c-UC) framework to tackle challenges from uncertainties of renewables. The proposed c-UC framework seeks cost-efficient scheduling of generators while ensuring operation constraints with guaranteed probability. We show that the scenario approach can be used to solve c-UC despite of the non-convexity from binary decision variables. We reveal the salient structural properties of c-UC, which could significantly reduce the sample complexity required by the scenario approach and speed up computation. Case studies are performed on a modified 118-bus system.\",\"PeriodicalId\":175719,\"journal\":{\"name\":\"2019 North American Power Symposium (NAPS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS46351.2019.9000192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS46351.2019.9000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

保持电力系统供需平衡是电力系统运行规划实践中的一项基本任务。由于可再生能源的深入渗透,这一任务变得特别具有挑战性,这引起了大量的不确定性。在本文中,我们提出了一个机会约束的单位承诺(c-UC)框架来应对可再生能源不确定性带来的挑战。提出的c-UC框架寻求发电机的成本效益调度,同时确保运行约束的保证概率。我们证明,尽管二元决策变量具有非凸性,但场景方法可以用于求解c-UC。我们揭示了c-UC的显著结构特性,这可以显著降低场景方法所需的样本复杂度并加快计算速度。案例研究是在一个改进的118总线系统上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chance-constrained Unit Commitment via the Scenario Approach
Keeping the balance between supply and demand is a fundamental task in power system operational planning practices. This task becomes particularly challenging due to the deepening penetration of renewable energy resources, which induces a significant amount of uncertainties. In this paper, we propose a chance-constrained Unit Commitment (c-UC) framework to tackle challenges from uncertainties of renewables. The proposed c-UC framework seeks cost-efficient scheduling of generators while ensuring operation constraints with guaranteed probability. We show that the scenario approach can be used to solve c-UC despite of the non-convexity from binary decision variables. We reveal the salient structural properties of c-UC, which could significantly reduce the sample complexity required by the scenario approach and speed up computation. Case studies are performed on a modified 118-bus system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信