多元冲击与振动数据状态转换的在线检测与分类

Nicklaus Przybylski, William M. Jones, Nathan Debardeleben
{"title":"多元冲击与振动数据状态转换的在线检测与分类","authors":"Nicklaus Przybylski, William M. Jones, Nathan Debardeleben","doi":"10.1109/HPEC55821.2022.9926361","DOIUrl":null,"url":null,"abstract":"The US Department of Energy's (DOE) Los Alamos National Laboratory (LANL) is interested in automatic anomaly detection and classification applied to highly instrumented flight shock and vibration data for the purpose of providing insight into operational safety. For example, the safe and secure transport of materials and devices during a variety of conditions is particularly of interest. In this work, we apply well-known Machine Learning (ML) techniques to a publicly available motor vibration data set that serves as a proxy to the actual LANL data. We successfully train a random forest to classify anomalous motor states using the signal data set, and use this model to simulate real-time anomaly detection and event classification on multi-variate time series data [1], [2]. Furthermore, we perform an extensive suite of computational studies on a large cluster computer to determine optimal parametric settings for our framework and evaluate the cost-benefit of these parameters.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Detection and Classification of State Transitions of Multivariate Shock and Vibration Data\",\"authors\":\"Nicklaus Przybylski, William M. Jones, Nathan Debardeleben\",\"doi\":\"10.1109/HPEC55821.2022.9926361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The US Department of Energy's (DOE) Los Alamos National Laboratory (LANL) is interested in automatic anomaly detection and classification applied to highly instrumented flight shock and vibration data for the purpose of providing insight into operational safety. For example, the safe and secure transport of materials and devices during a variety of conditions is particularly of interest. In this work, we apply well-known Machine Learning (ML) techniques to a publicly available motor vibration data set that serves as a proxy to the actual LANL data. We successfully train a random forest to classify anomalous motor states using the signal data set, and use this model to simulate real-time anomaly detection and event classification on multi-variate time series data [1], [2]. Furthermore, we perform an extensive suite of computational studies on a large cluster computer to determine optimal parametric settings for our framework and evaluate the cost-benefit of these parameters.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

美国能源部(DOE)洛斯阿拉莫斯国家实验室(LANL)对应用于高度仪表化的飞行冲击和振动数据的自动异常检测和分类很感兴趣,目的是为了深入了解操作安全性。例如,在各种条件下材料和设备的安全运输是特别感兴趣的。在这项工作中,我们将著名的机器学习(ML)技术应用于公开可用的电机振动数据集,该数据集作为实际LANL数据的代理。我们成功地利用信号数据集训练了一个随机森林来对电机异常状态进行分类,并利用该模型模拟了多变量时间序列数据上的实时异常检测和事件分类[1],[2]。此外,我们在大型集群计算机上进行了大量的计算研究,以确定我们框架的最佳参数设置,并评估这些参数的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Detection and Classification of State Transitions of Multivariate Shock and Vibration Data
The US Department of Energy's (DOE) Los Alamos National Laboratory (LANL) is interested in automatic anomaly detection and classification applied to highly instrumented flight shock and vibration data for the purpose of providing insight into operational safety. For example, the safe and secure transport of materials and devices during a variety of conditions is particularly of interest. In this work, we apply well-known Machine Learning (ML) techniques to a publicly available motor vibration data set that serves as a proxy to the actual LANL data. We successfully train a random forest to classify anomalous motor states using the signal data set, and use this model to simulate real-time anomaly detection and event classification on multi-variate time series data [1], [2]. Furthermore, we perform an extensive suite of computational studies on a large cluster computer to determine optimal parametric settings for our framework and evaluate the cost-benefit of these parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信