{"title":"Johnson图的超连通性","authors":"Gülnaz Boruzanli Ekinci, John Baptist Gauci","doi":"10.23638/DMTCS-22-1-12","DOIUrl":null,"url":null,"abstract":"For positive integers $n,k$ and $t$, the uniform subset graph $G(n, k, t)$ has all $k$-subsets of $\\{1,2,\\ldots, n\\}$ as vertices and two $k$-subsets are joined by an edge if they intersect at exactly $t$ elements. The Johnson graph $J(n,k)$ corresponds to $G(n,k,k-1)$, that is, two vertices of $J(n,k)$ are adjacent if the intersection of the corresponding $k$-subsets has size $k-1$. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs $J(n,k)$ for $n\\geq k\\geq 1$.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The super-connectivity of Johnson graphs\",\"authors\":\"Gülnaz Boruzanli Ekinci, John Baptist Gauci\",\"doi\":\"10.23638/DMTCS-22-1-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For positive integers $n,k$ and $t$, the uniform subset graph $G(n, k, t)$ has all $k$-subsets of $\\\\{1,2,\\\\ldots, n\\\\}$ as vertices and two $k$-subsets are joined by an edge if they intersect at exactly $t$ elements. The Johnson graph $J(n,k)$ corresponds to $G(n,k,k-1)$, that is, two vertices of $J(n,k)$ are adjacent if the intersection of the corresponding $k$-subsets has size $k-1$. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs $J(n,k)$ for $n\\\\geq k\\\\geq 1$.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23638/DMTCS-22-1-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/DMTCS-22-1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For positive integers $n,k$ and $t$, the uniform subset graph $G(n, k, t)$ has all $k$-subsets of $\{1,2,\ldots, n\}$ as vertices and two $k$-subsets are joined by an edge if they intersect at exactly $t$ elements. The Johnson graph $J(n,k)$ corresponds to $G(n,k,k-1)$, that is, two vertices of $J(n,k)$ are adjacent if the intersection of the corresponding $k$-subsets has size $k-1$. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs $J(n,k)$ for $n\geq k\geq 1$.