Johnson图的超连通性

Gülnaz Boruzanli Ekinci, John Baptist Gauci
{"title":"Johnson图的超连通性","authors":"Gülnaz Boruzanli Ekinci, John Baptist Gauci","doi":"10.23638/DMTCS-22-1-12","DOIUrl":null,"url":null,"abstract":"For positive integers $n,k$ and $t$, the uniform subset graph $G(n, k, t)$ has all $k$-subsets of $\\{1,2,\\ldots, n\\}$ as vertices and two $k$-subsets are joined by an edge if they intersect at exactly $t$ elements. The Johnson graph $J(n,k)$ corresponds to $G(n,k,k-1)$, that is, two vertices of $J(n,k)$ are adjacent if the intersection of the corresponding $k$-subsets has size $k-1$. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs $J(n,k)$ for $n\\geq k\\geq 1$.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The super-connectivity of Johnson graphs\",\"authors\":\"Gülnaz Boruzanli Ekinci, John Baptist Gauci\",\"doi\":\"10.23638/DMTCS-22-1-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For positive integers $n,k$ and $t$, the uniform subset graph $G(n, k, t)$ has all $k$-subsets of $\\\\{1,2,\\\\ldots, n\\\\}$ as vertices and two $k$-subsets are joined by an edge if they intersect at exactly $t$ elements. The Johnson graph $J(n,k)$ corresponds to $G(n,k,k-1)$, that is, two vertices of $J(n,k)$ are adjacent if the intersection of the corresponding $k$-subsets has size $k-1$. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs $J(n,k)$ for $n\\\\geq k\\\\geq 1$.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23638/DMTCS-22-1-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/DMTCS-22-1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于正整数$n,k$和$t$,统一子集图$G(n, k, t)$将$\{1,2,\ldots, n\}$的所有$k$ -子集作为顶点,如果两个$k$ -子集恰好相交于$t$个元素,则它们由一条边连接。Johnson图$J(n,k)$对应于$G(n,k,k-1)$,即如果对应的$k$ -子集的交集大小为$k-1$,则$J(n,k)$的两个顶点相邻。连通图的超级顶点切割是指在不隔离任何一个顶点的情况下将连通图断开的一组顶点,超级连通性是指最小超级顶点切割的大小。在这项工作中,我们充分确定了$n\geq k\geq 1$的Johnson图族$J(n,k)$的超连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The super-connectivity of Johnson graphs
For positive integers $n,k$ and $t$, the uniform subset graph $G(n, k, t)$ has all $k$-subsets of $\{1,2,\ldots, n\}$ as vertices and two $k$-subsets are joined by an edge if they intersect at exactly $t$ elements. The Johnson graph $J(n,k)$ corresponds to $G(n,k,k-1)$, that is, two vertices of $J(n,k)$ are adjacent if the intersection of the corresponding $k$-subsets has size $k-1$. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs $J(n,k)$ for $n\geq k\geq 1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信