基于混合模糊隐马尔可夫模型的人脸识别

Chaocheng Xie, Lei Li, Haixu Wang, Jiao He
{"title":"基于混合模糊隐马尔可夫模型的人脸识别","authors":"Chaocheng Xie, Lei Li, Haixu Wang, Jiao He","doi":"10.1109/ICSPS.2010.5555732","DOIUrl":null,"url":null,"abstract":"This paper proposes Hybrid Fuzzy Hidden Markov Models (FHMM) for face recognition. This recognition system includes fuzzy integral theory and Hidden Markov Model. Applying fuzzy expectation-maximization (FEM) algorithm in the Hidden Markov Model (HMM) is to estimate the relative parameters of faces which are close to real values in a better condition. Besides, in order to precisely obtain the probability density function of observations vector, taking full use of Gaussian Mixture Models (GMM), in which the weights are designed by using the fuzzy c-means (FCM) function. Comparing to conventional HMM, the proposed method achieves a better result.","PeriodicalId":234084,"journal":{"name":"2010 2nd International Conference on Signal Processing Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face recognition based Hybrid Fuzzy Hidden Markov Models\",\"authors\":\"Chaocheng Xie, Lei Li, Haixu Wang, Jiao He\",\"doi\":\"10.1109/ICSPS.2010.5555732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes Hybrid Fuzzy Hidden Markov Models (FHMM) for face recognition. This recognition system includes fuzzy integral theory and Hidden Markov Model. Applying fuzzy expectation-maximization (FEM) algorithm in the Hidden Markov Model (HMM) is to estimate the relative parameters of faces which are close to real values in a better condition. Besides, in order to precisely obtain the probability density function of observations vector, taking full use of Gaussian Mixture Models (GMM), in which the weights are designed by using the fuzzy c-means (FCM) function. Comparing to conventional HMM, the proposed method achieves a better result.\",\"PeriodicalId\":234084,\"journal\":{\"name\":\"2010 2nd International Conference on Signal Processing Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPS.2010.5555732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPS.2010.5555732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出一种用于人脸识别的混合模糊隐马尔可夫模型(FHMM)。该识别系统包括模糊积分理论和隐马尔可夫模型。在隐马尔可夫模型(HMM)中应用模糊期望最大化(FEM)算法,是为了在较好的条件下估计出接近实测值的人脸的相对参数。此外,为了精确地获得观测向量的概率密度函数,充分利用高斯混合模型(GMM),其中权值采用模糊c均值(FCM)函数设计。与传统HMM相比,该方法取得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition based Hybrid Fuzzy Hidden Markov Models
This paper proposes Hybrid Fuzzy Hidden Markov Models (FHMM) for face recognition. This recognition system includes fuzzy integral theory and Hidden Markov Model. Applying fuzzy expectation-maximization (FEM) algorithm in the Hidden Markov Model (HMM) is to estimate the relative parameters of faces which are close to real values in a better condition. Besides, in order to precisely obtain the probability density function of observations vector, taking full use of Gaussian Mixture Models (GMM), in which the weights are designed by using the fuzzy c-means (FCM) function. Comparing to conventional HMM, the proposed method achieves a better result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信