多照度/聚焦显示图像异常检测的对比知识蒸馏

Jihyun Lee, Hangi Park, Yongmin Seo, Taewon Min, Joodong Yun, Jaewon Kim, Tae-Kyun Kim
{"title":"多照度/聚焦显示图像异常检测的对比知识蒸馏","authors":"Jihyun Lee, Hangi Park, Yongmin Seo, Taewon Min, Joodong Yun, Jaewon Kim, Tae-Kyun Kim","doi":"10.23919/MVA57639.2023.10215808","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle automatic anomaly detection in multi-illumination and multi-focus display images. The minute defects on the display surface are hard to spot out in RGB images and by a model trained with only normal data. To address this, we propose a novel contrastive learning scheme for knowledge distillation-based anomaly detection. In our framework, Multiresolution Knowledge Distillation (MKD) is adopted as a baseline, which operates by measuring feature similarities between the teacher and student networks. Based on MKD, we propose a novel contrastive learning method, namely Multiresolution Contrastive Distillation (MCD), which does not require positive/negative pairs with an anchor but operates by pulling/pushing the distance between the teacher and student features. Furthermore, we propose the blending module that transforms and aggregate multi-channel information to the three-channel input layer of MCD. Our proposed method significantly outperforms competitive state-of-the-art methods in both AUROC and accuracy metrics on the collected Multi-illumination and Multi-focus display image dataset for Anomaly Detection (MMdAD).","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrastive Knowledge Distillation for Anomaly Detection in Multi-Illumination/Focus Display Images\",\"authors\":\"Jihyun Lee, Hangi Park, Yongmin Seo, Taewon Min, Joodong Yun, Jaewon Kim, Tae-Kyun Kim\",\"doi\":\"10.23919/MVA57639.2023.10215808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we tackle automatic anomaly detection in multi-illumination and multi-focus display images. The minute defects on the display surface are hard to spot out in RGB images and by a model trained with only normal data. To address this, we propose a novel contrastive learning scheme for knowledge distillation-based anomaly detection. In our framework, Multiresolution Knowledge Distillation (MKD) is adopted as a baseline, which operates by measuring feature similarities between the teacher and student networks. Based on MKD, we propose a novel contrastive learning method, namely Multiresolution Contrastive Distillation (MCD), which does not require positive/negative pairs with an anchor but operates by pulling/pushing the distance between the teacher and student features. Furthermore, we propose the blending module that transforms and aggregate multi-channel information to the three-channel input layer of MCD. Our proposed method significantly outperforms competitive state-of-the-art methods in both AUROC and accuracy metrics on the collected Multi-illumination and Multi-focus display image dataset for Anomaly Detection (MMdAD).\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究多照度、多聚焦显示图像的自动异常检测问题。在RGB图像和仅使用正常数据训练的模型中,显示表面上的微小缺陷很难被发现。为了解决这个问题,我们提出了一种新的基于知识提取的异常检测对比学习方案。在我们的框架中,采用多分辨率知识蒸馏(MKD)作为基线,它通过测量教师和学生网络之间的特征相似性来运行。基于MKD,我们提出了一种新的对比学习方法,即多分辨率对比蒸馏(Multiresolution contrastive Distillation, MCD),该方法不需要带锚点的正/负对,而是通过拉/推师生特征之间的距离来实现。在此基础上,提出了将多通道信息转换聚合到MCD的三通道输入层的混合模块。我们提出的方法在收集的用于异常检测(MMdAD)的多照度和多焦点显示图像数据集的AUROC和精度指标上都明显优于竞争最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive Knowledge Distillation for Anomaly Detection in Multi-Illumination/Focus Display Images
In this paper, we tackle automatic anomaly detection in multi-illumination and multi-focus display images. The minute defects on the display surface are hard to spot out in RGB images and by a model trained with only normal data. To address this, we propose a novel contrastive learning scheme for knowledge distillation-based anomaly detection. In our framework, Multiresolution Knowledge Distillation (MKD) is adopted as a baseline, which operates by measuring feature similarities between the teacher and student networks. Based on MKD, we propose a novel contrastive learning method, namely Multiresolution Contrastive Distillation (MCD), which does not require positive/negative pairs with an anchor but operates by pulling/pushing the distance between the teacher and student features. Furthermore, we propose the blending module that transforms and aggregate multi-channel information to the three-channel input layer of MCD. Our proposed method significantly outperforms competitive state-of-the-art methods in both AUROC and accuracy metrics on the collected Multi-illumination and Multi-focus display image dataset for Anomaly Detection (MMdAD).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信