基于主动学习和支持向量数据描述的高光谱图像异常检测

Liyan Zhang, Shouyin He, Xianling Zeng, Yonghua Sun, Ronghua Hu
{"title":"基于主动学习和支持向量数据描述的高光谱图像异常检测","authors":"Liyan Zhang, Shouyin He, Xianling Zeng, Yonghua Sun, Ronghua Hu","doi":"10.4156/AISS.VOL5.ISSUE12.18","DOIUrl":null,"url":null,"abstract":"The Support Vector Data Description (SVDD) method for anomaly detection in hyperspectral imagery solved the problem of large numbers of false alarm in general detection methods based on statistical theory due to the Gaussian and homogeneous assumptions of background, but the background samples are selected randomly in SVDD. The active learning provides an effective sample selection method, therefore this paper presents Active Learning Support Vector Data Description (ALSVDD) method which is used to detect anomalies in hyperspectral imagery combing with neighboring clustering segmentation. ALSVDD method uses optimized minimal hypersphere to express the background tightly and distinguish function to detect anomalous pixels, which takes full advantage of the spatial and spectral information of the hyperspectral imagery. The method reduces the number of samples that is needed in the process of the algorithm and avoids the interference of possible anomalies in background. The experiments on the simulation data and AVIRIS data show the validity, efficiency and practicability of the proposed method which greatly reduces the computation complexity and false alarm rate in detecting anomalies in hyperspectral imagery.","PeriodicalId":161961,"journal":{"name":"International Journal on Advances in Information Sciences and Service Sciences","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anomaly Detection for Hyperspectral Imagery Based on Active Learning with Support Vector Data Description\",\"authors\":\"Liyan Zhang, Shouyin He, Xianling Zeng, Yonghua Sun, Ronghua Hu\",\"doi\":\"10.4156/AISS.VOL5.ISSUE12.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Support Vector Data Description (SVDD) method for anomaly detection in hyperspectral imagery solved the problem of large numbers of false alarm in general detection methods based on statistical theory due to the Gaussian and homogeneous assumptions of background, but the background samples are selected randomly in SVDD. The active learning provides an effective sample selection method, therefore this paper presents Active Learning Support Vector Data Description (ALSVDD) method which is used to detect anomalies in hyperspectral imagery combing with neighboring clustering segmentation. ALSVDD method uses optimized minimal hypersphere to express the background tightly and distinguish function to detect anomalous pixels, which takes full advantage of the spatial and spectral information of the hyperspectral imagery. The method reduces the number of samples that is needed in the process of the algorithm and avoids the interference of possible anomalies in background. The experiments on the simulation data and AVIRIS data show the validity, efficiency and practicability of the proposed method which greatly reduces the computation complexity and false alarm rate in detecting anomalies in hyperspectral imagery.\",\"PeriodicalId\":161961,\"journal\":{\"name\":\"International Journal on Advances in Information Sciences and Service Sciences\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Advances in Information Sciences and Service Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/AISS.VOL5.ISSUE12.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Advances in Information Sciences and Service Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/AISS.VOL5.ISSUE12.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高光谱图像异常检测的支持向量数据描述(SVDD)方法解决了一般基于统计理论的检测方法由于背景假设为高斯和齐次而产生大量虚警的问题,但SVDD中背景样本的选取是随机的。主动学习提供了一种有效的样本选择方法,因此本文提出了主动学习支持向量数据描述(ALSVDD)方法,并结合相邻聚类分割对高光谱图像进行异常检测。ALSVDD方法利用优化的最小超球紧密表达背景和区分函数检测异常像元,充分利用了高光谱图像的空间和光谱信息。该方法减少了算法过程中所需的样本数量,避免了背景中可能出现的异常的干扰。在仿真数据和AVIRIS数据上的实验表明了该方法的有效性、高效化和实用性,大大降低了高光谱图像异常检测的计算复杂度和虚警率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection for Hyperspectral Imagery Based on Active Learning with Support Vector Data Description
The Support Vector Data Description (SVDD) method for anomaly detection in hyperspectral imagery solved the problem of large numbers of false alarm in general detection methods based on statistical theory due to the Gaussian and homogeneous assumptions of background, but the background samples are selected randomly in SVDD. The active learning provides an effective sample selection method, therefore this paper presents Active Learning Support Vector Data Description (ALSVDD) method which is used to detect anomalies in hyperspectral imagery combing with neighboring clustering segmentation. ALSVDD method uses optimized minimal hypersphere to express the background tightly and distinguish function to detect anomalous pixels, which takes full advantage of the spatial and spectral information of the hyperspectral imagery. The method reduces the number of samples that is needed in the process of the algorithm and avoids the interference of possible anomalies in background. The experiments on the simulation data and AVIRIS data show the validity, efficiency and practicability of the proposed method which greatly reduces the computation complexity and false alarm rate in detecting anomalies in hyperspectral imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信