非线性重复系统故障估计:一种迭代学习方法

Jiantao Shi, Le Xin, Jun Sun, Yuhao Yang, Ning Wang
{"title":"非线性重复系统故障估计:一种迭代学习方法","authors":"Jiantao Shi, Le Xin, Jun Sun, Yuhao Yang, Ning Wang","doi":"10.23919/CHICC.2018.8483185","DOIUrl":null,"url":null,"abstract":"In this paper, the fault estimation (FE) problem for a class of nonlinear repetitive systems with bounded initial state errors is investigated by using an accelerated iterative learning (IL) approach. In each iteration, only the boundedness condition is known, which can reduce the conservativeness of IL methods when applied to industrial production. The traditional IL algorithm is modified by adding a weight coefficient to accelerate the learning speed and weaken or even eliminate the negative influence of initial state errors on the convergence of fault estimation errors. A sufficient condition is established for guaranteeing accurate fault estimation under the proposed IL-based scheme as the iteration numbers increase. Finally, illustrative examples are presented to verify the effectiveness of the proposed modified fault estimation scheme.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Estimation for Nonlinear Repetitive Systems: An Iterative Learning Approach\",\"authors\":\"Jiantao Shi, Le Xin, Jun Sun, Yuhao Yang, Ning Wang\",\"doi\":\"10.23919/CHICC.2018.8483185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the fault estimation (FE) problem for a class of nonlinear repetitive systems with bounded initial state errors is investigated by using an accelerated iterative learning (IL) approach. In each iteration, only the boundedness condition is known, which can reduce the conservativeness of IL methods when applied to industrial production. The traditional IL algorithm is modified by adding a weight coefficient to accelerate the learning speed and weaken or even eliminate the negative influence of initial state errors on the convergence of fault estimation errors. A sufficient condition is established for guaranteeing accurate fault estimation under the proposed IL-based scheme as the iteration numbers increase. Finally, illustrative examples are presented to verify the effectiveness of the proposed modified fault estimation scheme.\",\"PeriodicalId\":158442,\"journal\":{\"name\":\"2018 37th Chinese Control Conference (CCC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 37th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CHICC.2018.8483185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8483185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用加速迭代学习方法研究了一类初始状态误差有界的非线性重复系统的故障估计问题。在每次迭代中,只有有界条件是已知的,这可以降低IL方法应用于工业生产时的保守性。通过加入权系数对传统的IL算法进行改进,加快了学习速度,减弱甚至消除了初始状态误差对故障估计误差收敛性的负面影响。随着迭代次数的增加,给出了保证故障估计精度的充分条件。最后,通过算例验证了改进后的故障估计方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Estimation for Nonlinear Repetitive Systems: An Iterative Learning Approach
In this paper, the fault estimation (FE) problem for a class of nonlinear repetitive systems with bounded initial state errors is investigated by using an accelerated iterative learning (IL) approach. In each iteration, only the boundedness condition is known, which can reduce the conservativeness of IL methods when applied to industrial production. The traditional IL algorithm is modified by adding a weight coefficient to accelerate the learning speed and weaken or even eliminate the negative influence of initial state errors on the convergence of fault estimation errors. A sufficient condition is established for guaranteeing accurate fault estimation under the proposed IL-based scheme as the iteration numbers increase. Finally, illustrative examples are presented to verify the effectiveness of the proposed modified fault estimation scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信