银行服务质量的情感分析:基于规则的分类器

Yuliya Bidulya, Elena G. Brunova
{"title":"银行服务质量的情感分析:基于规则的分类器","authors":"Yuliya Bidulya, Elena G. Brunova","doi":"10.1109/ICAICT.2016.7991688","DOIUrl":null,"url":null,"abstract":"The paper considers the analysis of the subjective information from user-generated content. The purpose of this research is to develop a rule-based classifier for the sentiment analysis within the bank service quality domain. Our sentiment lexicon includes 286 positive and 385 negative words. Besides, three more lexicon classes are added; they are required to apply the rule-based algorithm. To test the algorithm, 200 reviews in Russian are analyzed. The experiment demonstrates that the efficiency of the rule-based classifier is higher as compared to the Naïve Bayes classifier. It is determined that the system generally detects positive reviews better than negative ones.","PeriodicalId":446472,"journal":{"name":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","volume":"1651 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Sentiment analysis for bank service quality: A rule-based classifier\",\"authors\":\"Yuliya Bidulya, Elena G. Brunova\",\"doi\":\"10.1109/ICAICT.2016.7991688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the analysis of the subjective information from user-generated content. The purpose of this research is to develop a rule-based classifier for the sentiment analysis within the bank service quality domain. Our sentiment lexicon includes 286 positive and 385 negative words. Besides, three more lexicon classes are added; they are required to apply the rule-based algorithm. To test the algorithm, 200 reviews in Russian are analyzed. The experiment demonstrates that the efficiency of the rule-based classifier is higher as compared to the Naïve Bayes classifier. It is determined that the system generally detects positive reviews better than negative ones.\",\"PeriodicalId\":446472,\"journal\":{\"name\":\"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"1651 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICT.2016.7991688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICT.2016.7991688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文考虑对用户生成内容中的主观信息进行分析。本研究的目的是开发一个基于规则的分类器,用于银行服务质量领域的情感分析。我们的情感词汇包括286个积极词汇和385个消极词汇。此外,还增加了三个词汇类;它们需要应用基于规则的算法。为了测试该算法,我们分析了200条俄语评论。实验表明,与Naïve贝叶斯分类器相比,基于规则的分类器的效率更高。可以确定的是,系统通常会更好地检测正面评论而不是负面评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment analysis for bank service quality: A rule-based classifier
The paper considers the analysis of the subjective information from user-generated content. The purpose of this research is to develop a rule-based classifier for the sentiment analysis within the bank service quality domain. Our sentiment lexicon includes 286 positive and 385 negative words. Besides, three more lexicon classes are added; they are required to apply the rule-based algorithm. To test the algorithm, 200 reviews in Russian are analyzed. The experiment demonstrates that the efficiency of the rule-based classifier is higher as compared to the Naïve Bayes classifier. It is determined that the system generally detects positive reviews better than negative ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信