用于工业任务的智能对象操作框架

Artur Saudabayev, Yerbolat Khassanov, A. Shintemirov, H. A. Varol
{"title":"用于工业任务的智能对象操作框架","authors":"Artur Saudabayev, Yerbolat Khassanov, A. Shintemirov, H. A. Varol","doi":"10.1109/ICMA.2013.6618173","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent object manipulation framework for industrial tasks, which integrates a sensor-rich multi-fingered robot hand, an industrial robot manipulator, a conveyor belt and employs machine learning algorithms. The framework software architecture is implemented using a Windows 7 operating system with RTX real-time extension for synchronous handling of peripheral devices. The framework uses Scale Invariant Feature Transform (SIFT) image processing algorithm, Support Vector Machine (SVM) machine learning algorithm and 3D point cloud techniques for intelligent object recognition based on RGB camera and laser rangefinder information from the robot hand end effector. The objective is automated manipulation of objects with different shapes and poses with minimum programming effort applied by a user.","PeriodicalId":335884,"journal":{"name":"2013 IEEE International Conference on Mechatronics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An intelligent object manipulation framework for industrial tasks\",\"authors\":\"Artur Saudabayev, Yerbolat Khassanov, A. Shintemirov, H. A. Varol\",\"doi\":\"10.1109/ICMA.2013.6618173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent object manipulation framework for industrial tasks, which integrates a sensor-rich multi-fingered robot hand, an industrial robot manipulator, a conveyor belt and employs machine learning algorithms. The framework software architecture is implemented using a Windows 7 operating system with RTX real-time extension for synchronous handling of peripheral devices. The framework uses Scale Invariant Feature Transform (SIFT) image processing algorithm, Support Vector Machine (SVM) machine learning algorithm and 3D point cloud techniques for intelligent object recognition based on RGB camera and laser rangefinder information from the robot hand end effector. The objective is automated manipulation of objects with different shapes and poses with minimum programming effort applied by a user.\",\"PeriodicalId\":335884,\"journal\":{\"name\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2013.6618173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2013.6618173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种面向工业任务的智能对象操作框架,该框架集成了传感器丰富的多指机械手、工业机器人机械手和传送带,并采用机器学习算法。该框架软件架构采用Windows 7操作系统实现,采用RTX实时扩展实现对外围设备的同步处理。该框架采用尺度不变特征变换(SIFT)图像处理算法、支持向量机(SVM)机器学习算法和三维点云技术,基于RGB相机和激光测距仪来自机械手末端执行器的信息进行智能目标识别。目标是自动操作对象与不同的形状和姿态与最小的编程努力应用的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligent object manipulation framework for industrial tasks
This paper presents an intelligent object manipulation framework for industrial tasks, which integrates a sensor-rich multi-fingered robot hand, an industrial robot manipulator, a conveyor belt and employs machine learning algorithms. The framework software architecture is implemented using a Windows 7 operating system with RTX real-time extension for synchronous handling of peripheral devices. The framework uses Scale Invariant Feature Transform (SIFT) image processing algorithm, Support Vector Machine (SVM) machine learning algorithm and 3D point cloud techniques for intelligent object recognition based on RGB camera and laser rangefinder information from the robot hand end effector. The objective is automated manipulation of objects with different shapes and poses with minimum programming effort applied by a user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信