时域有限差分、有限积分和积分方程方法在探地雷达天线建模中的比较

C. Warren, L. Pajewski, D. Poljak, A. Ventura, A. Giannopoulos, S. Šesnić
{"title":"时域有限差分、有限积分和积分方程方法在探地雷达天线建模中的比较","authors":"C. Warren, L. Pajewski, D. Poljak, A. Ventura, A. Giannopoulos, S. Šesnić","doi":"10.1109/ICGPR.2016.7572676","DOIUrl":null,"url":null,"abstract":"Development of accurate models of GPR antennas is being driven by research into more accurate simulation of amplitude and phase information, improved antenna designs, and better-performing forward simulations for inversion procedures. Models of a simple dipole antenna, as well as more complex models similar to a GSSI 1.5GHz antenna and a MALA Geo-science 1.2GHz antenna were investigated in free space and over lossless and lossy dielectric half-spaces. We present comparisons of simulated data using the Finite-Integration Technique, the Finite-Difference Time-Domain method, and a Time-Domain Integral Equation approach, as well as measured data. For each scenario, phase, amplitude, and the shape of the waveform were compared. Generally we found very good agreement between the different simulation techniques, and good agreement between experimental and simulated data. Differences that were evident highlight the significance of understanding how features such as antenna feeding and material dispersion are modelled. This degree of match between experimental and simulated data cannot be attained by using just an infinitesimal dipole model in a simulation - a model including the structure of the antenna is required. This is important for the many GPR applications which operate in the near-field of the antenna, where the interaction between the antenna, the ground, and targets is important.","PeriodicalId":187048,"journal":{"name":"2016 16th International Conference on Ground Penetrating Radar (GPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A comparison of finite-difference, finite-integration, and integral-equation methods in the time-domain for modelling ground penetrating radar antennas\",\"authors\":\"C. Warren, L. Pajewski, D. Poljak, A. Ventura, A. Giannopoulos, S. Šesnić\",\"doi\":\"10.1109/ICGPR.2016.7572676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of accurate models of GPR antennas is being driven by research into more accurate simulation of amplitude and phase information, improved antenna designs, and better-performing forward simulations for inversion procedures. Models of a simple dipole antenna, as well as more complex models similar to a GSSI 1.5GHz antenna and a MALA Geo-science 1.2GHz antenna were investigated in free space and over lossless and lossy dielectric half-spaces. We present comparisons of simulated data using the Finite-Integration Technique, the Finite-Difference Time-Domain method, and a Time-Domain Integral Equation approach, as well as measured data. For each scenario, phase, amplitude, and the shape of the waveform were compared. Generally we found very good agreement between the different simulation techniques, and good agreement between experimental and simulated data. Differences that were evident highlight the significance of understanding how features such as antenna feeding and material dispersion are modelled. This degree of match between experimental and simulated data cannot be attained by using just an infinitesimal dipole model in a simulation - a model including the structure of the antenna is required. This is important for the many GPR applications which operate in the near-field of the antenna, where the interaction between the antenna, the ground, and targets is important.\",\"PeriodicalId\":187048,\"journal\":{\"name\":\"2016 16th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2016.7572676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2016.7572676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

GPR天线精确模型的发展是由更精确的振幅和相位信息模拟、改进的天线设计和更好的反演程序正演模拟的研究驱动的。在自由空间和无损和有损介电半空间中研究了简单偶极子天线模型,以及类似于GSSI 1.5GHz天线和MALA geoscience 1.2GHz天线的更复杂模型。我们使用有限积分技术、时域有限差分方法和时域积分方程方法对模拟数据以及测量数据进行了比较。对于每种情况,相位、幅度和波形的形状进行了比较。总的来说,我们发现不同的模拟技术之间有很好的一致性,实验数据和模拟数据之间也有很好的一致性。这些明显的差异突出了理解天线馈电和材料弥散等特征如何建模的重要性。实验数据和模拟数据之间的这种程度的匹配不能仅仅通过在模拟中使用一个无穷小的偶极子模型来实现——需要一个包括天线结构的模型。这对于在天线近场操作的许多GPR应用非常重要,因为天线、地面和目标之间的相互作用非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of finite-difference, finite-integration, and integral-equation methods in the time-domain for modelling ground penetrating radar antennas
Development of accurate models of GPR antennas is being driven by research into more accurate simulation of amplitude and phase information, improved antenna designs, and better-performing forward simulations for inversion procedures. Models of a simple dipole antenna, as well as more complex models similar to a GSSI 1.5GHz antenna and a MALA Geo-science 1.2GHz antenna were investigated in free space and over lossless and lossy dielectric half-spaces. We present comparisons of simulated data using the Finite-Integration Technique, the Finite-Difference Time-Domain method, and a Time-Domain Integral Equation approach, as well as measured data. For each scenario, phase, amplitude, and the shape of the waveform were compared. Generally we found very good agreement between the different simulation techniques, and good agreement between experimental and simulated data. Differences that were evident highlight the significance of understanding how features such as antenna feeding and material dispersion are modelled. This degree of match between experimental and simulated data cannot be attained by using just an infinitesimal dipole model in a simulation - a model including the structure of the antenna is required. This is important for the many GPR applications which operate in the near-field of the antenna, where the interaction between the antenna, the ground, and targets is important.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信