新型星形聚合物甲基丙烯酸叔丁酯和甲基丙烯酸异丁酯的合成与表征

T. Long, L. Kilian, Zhen-he Wang, A. Esker
{"title":"新型星形聚合物甲基丙烯酸叔丁酯和甲基丙烯酸异丁酯的合成与表征","authors":"T. Long, L. Kilian, Zhen-he Wang, A. Esker","doi":"10.1117/12.446778","DOIUrl":null,"url":null,"abstract":"Star-shaped polymers containing poly(isobutyl methacrylate) (iBMA) and poly(tert-butyl methacrylate) (t-BMA) arms coupled to a 2,5-dimethyl-2,5-hexanediol dimethacrylate (DHDMA) core were synthesized using arm-first living anionic polymerization. Gel permeation chromatography (GPC) indicated that coupling efficiencies were high and coupled products exhibited a monomodal molecular weight distribution. The star-shaped polymer number--average molecular weights were 8-10 times higher than the precursor arm molecular weights. The ratio of coupling reagent to living chain end concentration controlled the molecular weight of the star-shaped polymer and the number of coupled arms. The molecular weight distributions of the star-shaped polymers ranged from 1.5-2.0. Due to the labile tertiary- butyl esters contained in the DHDMA cores, these star-shaped polymers were readily hydrolyzed in the presence of acid catalysts. For example, poly(iBMA) star-shaped polymers were hydrolytically stable at 25 degree(s)C and hydrolyzed readily at 65 degree(s)C in the presence of hydrochloric acid. In addition, the poly(t-BMA) containing star--shaped polymers degraded under similar conditions. The degradation process for the iBMA and t-BMA containing star-shaped polymers was confirmed using 1H NMR spectroscopy, and poly(iBMA)-block- poly(methacrylic acid) and poly(methacrylic acid) were obtained, respectively.","PeriodicalId":341144,"journal":{"name":"Complex Adaptive Structures","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and characterization of novel acid-sensitive tert-butyl methacrylate and isobutyl methacrylate containing star-shaped polymers\",\"authors\":\"T. Long, L. Kilian, Zhen-he Wang, A. Esker\",\"doi\":\"10.1117/12.446778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Star-shaped polymers containing poly(isobutyl methacrylate) (iBMA) and poly(tert-butyl methacrylate) (t-BMA) arms coupled to a 2,5-dimethyl-2,5-hexanediol dimethacrylate (DHDMA) core were synthesized using arm-first living anionic polymerization. Gel permeation chromatography (GPC) indicated that coupling efficiencies were high and coupled products exhibited a monomodal molecular weight distribution. The star-shaped polymer number--average molecular weights were 8-10 times higher than the precursor arm molecular weights. The ratio of coupling reagent to living chain end concentration controlled the molecular weight of the star-shaped polymer and the number of coupled arms. The molecular weight distributions of the star-shaped polymers ranged from 1.5-2.0. Due to the labile tertiary- butyl esters contained in the DHDMA cores, these star-shaped polymers were readily hydrolyzed in the presence of acid catalysts. For example, poly(iBMA) star-shaped polymers were hydrolytically stable at 25 degree(s)C and hydrolyzed readily at 65 degree(s)C in the presence of hydrochloric acid. In addition, the poly(t-BMA) containing star--shaped polymers degraded under similar conditions. The degradation process for the iBMA and t-BMA containing star-shaped polymers was confirmed using 1H NMR spectroscopy, and poly(iBMA)-block- poly(methacrylic acid) and poly(methacrylic acid) were obtained, respectively.\",\"PeriodicalId\":341144,\"journal\":{\"name\":\"Complex Adaptive Structures\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Adaptive Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.446778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Adaptive Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.446778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用臂首活阴离子聚合法合成了由聚甲基丙烯酸异丁酯(iBMA)和聚甲基丙烯酸叔丁酯(t-BMA)臂与2,5-二甲基-2,5-己二醇二甲基丙烯酸酯(DHDMA)核偶联的星形聚合物。凝胶渗透色谱(GPC)表明,偶联效率高,偶联产物呈现单峰分子量分布。星形聚合物数—平均分子量比前体臂分子量高8—10倍。偶联剂与活链端浓度的比值控制了星形聚合物的分子量和偶联臂的数目。星形聚合物的分子量分布在1.5 ~ 2.0之间。由于DHDMA核心中含有不稳定的叔丁基酯,这些星形聚合物在酸催化剂的存在下很容易水解。例如,聚(iBMA)星形聚合物在25℃时水解稳定,在盐酸存在下在65℃时易于水解。此外,含有星形聚合物的聚(t-BMA)在类似的条件下降解。采用1H NMR谱法确定了含星形聚合物的iBMA和t-BMA的降解过程,得到了聚(iBMA)-嵌段-聚(甲基丙烯酸)和聚(甲基丙烯酸)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and characterization of novel acid-sensitive tert-butyl methacrylate and isobutyl methacrylate containing star-shaped polymers
Star-shaped polymers containing poly(isobutyl methacrylate) (iBMA) and poly(tert-butyl methacrylate) (t-BMA) arms coupled to a 2,5-dimethyl-2,5-hexanediol dimethacrylate (DHDMA) core were synthesized using arm-first living anionic polymerization. Gel permeation chromatography (GPC) indicated that coupling efficiencies were high and coupled products exhibited a monomodal molecular weight distribution. The star-shaped polymer number--average molecular weights were 8-10 times higher than the precursor arm molecular weights. The ratio of coupling reagent to living chain end concentration controlled the molecular weight of the star-shaped polymer and the number of coupled arms. The molecular weight distributions of the star-shaped polymers ranged from 1.5-2.0. Due to the labile tertiary- butyl esters contained in the DHDMA cores, these star-shaped polymers were readily hydrolyzed in the presence of acid catalysts. For example, poly(iBMA) star-shaped polymers were hydrolytically stable at 25 degree(s)C and hydrolyzed readily at 65 degree(s)C in the presence of hydrochloric acid. In addition, the poly(t-BMA) containing star--shaped polymers degraded under similar conditions. The degradation process for the iBMA and t-BMA containing star-shaped polymers was confirmed using 1H NMR spectroscopy, and poly(iBMA)-block- poly(methacrylic acid) and poly(methacrylic acid) were obtained, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信