词性标注转换的标签对应学习

Muhua Zhu, Huizhen Wang, Jingbo Zhu
{"title":"词性标注转换的标签对应学习","authors":"Muhua Zhu, Huizhen Wang, Jingbo Zhu","doi":"10.1145/1645953.1646145","DOIUrl":null,"url":null,"abstract":"The performance of machine learning methods heavily depends on the volume of used training data. For the purpose of dataset enlargement, it is of interest to study the problem of unifying multiple labeled datasets with different annotation standards. In this paper, we focus on the case of unifying datasets for sequence labeling problems with natural language part-of-speech (POS) tagging as an examplar application. To this end, we propose a probabilistic approach to transforming the annotations of one dataset to the standard specified by another dataset. The key component of the approach, named as label correspondence learning, serves as a bridge of annotations from the datasets. Two methods designed from distinct perspectives are proposed to attack this sub-problem. Experiments on two large-scale part-of-speech datasets demonstrate the efficacy of the transformation and label correspondence learning methods.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Label correspondence learning for part-of-speech annotation transformation\",\"authors\":\"Muhua Zhu, Huizhen Wang, Jingbo Zhu\",\"doi\":\"10.1145/1645953.1646145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of machine learning methods heavily depends on the volume of used training data. For the purpose of dataset enlargement, it is of interest to study the problem of unifying multiple labeled datasets with different annotation standards. In this paper, we focus on the case of unifying datasets for sequence labeling problems with natural language part-of-speech (POS) tagging as an examplar application. To this end, we propose a probabilistic approach to transforming the annotations of one dataset to the standard specified by another dataset. The key component of the approach, named as label correspondence learning, serves as a bridge of annotations from the datasets. Two methods designed from distinct perspectives are proposed to attack this sub-problem. Experiments on two large-scale part-of-speech datasets demonstrate the efficacy of the transformation and label correspondence learning methods.\",\"PeriodicalId\":286251,\"journal\":{\"name\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1645953.1646145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器学习方法的性能在很大程度上取决于使用的训练数据量。为了实现数据集的扩充,研究不同标注标准的多标签数据集的统一问题是一个很有意义的问题。本文以自然语言词性标注(POS)为例,重点讨论了序列标注问题的统一数据集。为此,我们提出了一种概率方法,将一个数据集的注释转换为另一个数据集指定的标准。该方法的关键组成部分,称为标签对应学习,作为数据集注释的桥梁。从不同的角度设计了两种方法来解决这个子问题。在两个大规模词性数据集上的实验证明了变换和标签对应学习方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Label correspondence learning for part-of-speech annotation transformation
The performance of machine learning methods heavily depends on the volume of used training data. For the purpose of dataset enlargement, it is of interest to study the problem of unifying multiple labeled datasets with different annotation standards. In this paper, we focus on the case of unifying datasets for sequence labeling problems with natural language part-of-speech (POS) tagging as an examplar application. To this end, we propose a probabilistic approach to transforming the annotations of one dataset to the standard specified by another dataset. The key component of the approach, named as label correspondence learning, serves as a bridge of annotations from the datasets. Two methods designed from distinct perspectives are proposed to attack this sub-problem. Experiments on two large-scale part-of-speech datasets demonstrate the efficacy of the transformation and label correspondence learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信