语义网的信息检索模型

Fabio Silva, R. Girardi, Lucas Drumond
{"title":"语义网的信息检索模型","authors":"Fabio Silva, R. Girardi, Lucas Drumond","doi":"10.1109/ITNG.2009.116","DOIUrl":null,"url":null,"abstract":"Exploring the metadata associated with documents in the Semantic Web is a way to increase the precision of information retrieval systems. Systems have been established so far failed to overcome fully the limitations of search based on keywords. Such systems are built from variations of classic models that represent information by keywords and work upon statistical correlations. This work proposes an information retrieval model to find information items with similar semantic content that a given user’s query. The information items internal representation is based on user interest groups, called \"semantic cases\". The model also defines a similarity measure for ordering the results based on semantic distance between semantic cases items.","PeriodicalId":347761,"journal":{"name":"2009 Sixth International Conference on Information Technology: New Generations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Information Retrieval Model for the Semantic Web\",\"authors\":\"Fabio Silva, R. Girardi, Lucas Drumond\",\"doi\":\"10.1109/ITNG.2009.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring the metadata associated with documents in the Semantic Web is a way to increase the precision of information retrieval systems. Systems have been established so far failed to overcome fully the limitations of search based on keywords. Such systems are built from variations of classic models that represent information by keywords and work upon statistical correlations. This work proposes an information retrieval model to find information items with similar semantic content that a given user’s query. The information items internal representation is based on user interest groups, called \\\"semantic cases\\\". The model also defines a similarity measure for ordering the results based on semantic distance between semantic cases items.\",\"PeriodicalId\":347761,\"journal\":{\"name\":\"2009 Sixth International Conference on Information Technology: New Generations\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Sixth International Conference on Information Technology: New Generations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNG.2009.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Conference on Information Technology: New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2009.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在语义Web中探索与文档相关的元数据是提高信息检索系统精度的一种方法。迄今为止建立的系统未能完全克服基于关键词的搜索的局限性。这样的系统是由经典模型的变体构建而成的,这些模型通过关键词来表示信息,并根据统计相关性进行工作。该工作提出了一个信息检索模型,用于查找与给定用户查询具有相似语义内容的信息项。信息项的内部表示是基于用户兴趣组的,称为“语义案例”。该模型还定义了基于语义用例项之间的语义距离对结果排序的相似度度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Information Retrieval Model for the Semantic Web
Exploring the metadata associated with documents in the Semantic Web is a way to increase the precision of information retrieval systems. Systems have been established so far failed to overcome fully the limitations of search based on keywords. Such systems are built from variations of classic models that represent information by keywords and work upon statistical correlations. This work proposes an information retrieval model to find information items with similar semantic content that a given user’s query. The information items internal representation is based on user interest groups, called "semantic cases". The model also defines a similarity measure for ordering the results based on semantic distance between semantic cases items.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信