基于lstm的同步语音去噪联合渐进学习框架

Xin Tang, Jun Du, Li Chai, Yannan Wang, Qing Wang, Chin-Hui Lee
{"title":"基于lstm的同步语音去噪联合渐进学习框架","authors":"Xin Tang, Jun Du, Li Chai, Yannan Wang, Qing Wang, Chin-Hui Lee","doi":"10.1109/APSIPAASC47483.2019.9023160","DOIUrl":null,"url":null,"abstract":"We propose a joint progressive learning (JPL) framework of gradually mapping highly noisy and reverberant speech features to less noisy and less reverberant speech features in a layer-by-layer stacking scenario for simultaneous speech denoising and dereverberation. As such layers are easier to learn than mapping highly distorted speech features directly to clean and anechoic speech features, we adopt a divide-and-conquer learning strategy based on a long short-term memory (LSTM) architecture, and explicitly design multiple intermediate target layers. Each hidden layer of the LSTM network is guided by a step-by-step signal-to-noise-ratio (SNR) increase and reverberant time decrease. Moreover, post-processing is applied to further improve the enhancement performance by averaging the estimated intermediate targets. Experiments demonstrate that the proposed JPL approach not only improves objective measures for speech quality and intelligibility, but also achieves a more compact model design when compared to the direct mapping and two-stage, namely denoising followed dereverberation approaches.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A LSTM-Based Joint Progressive Learning Framework for Simultaneous Speech Dereverberation and Denoising\",\"authors\":\"Xin Tang, Jun Du, Li Chai, Yannan Wang, Qing Wang, Chin-Hui Lee\",\"doi\":\"10.1109/APSIPAASC47483.2019.9023160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a joint progressive learning (JPL) framework of gradually mapping highly noisy and reverberant speech features to less noisy and less reverberant speech features in a layer-by-layer stacking scenario for simultaneous speech denoising and dereverberation. As such layers are easier to learn than mapping highly distorted speech features directly to clean and anechoic speech features, we adopt a divide-and-conquer learning strategy based on a long short-term memory (LSTM) architecture, and explicitly design multiple intermediate target layers. Each hidden layer of the LSTM network is guided by a step-by-step signal-to-noise-ratio (SNR) increase and reverberant time decrease. Moreover, post-processing is applied to further improve the enhancement performance by averaging the estimated intermediate targets. Experiments demonstrate that the proposed JPL approach not only improves objective measures for speech quality and intelligibility, but also achieves a more compact model design when compared to the direct mapping and two-stage, namely denoising followed dereverberation approaches.\",\"PeriodicalId\":145222,\"journal\":{\"name\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPAASC47483.2019.9023160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个联合渐进学习(JPL)框架,在逐层叠加场景中逐步将高噪声和混响的语音特征映射到低噪声和低混响的语音特征,以同时进行语音去噪和去噪。由于这些层比直接将高度失真的语音特征映射到干净和无回声的语音特征更容易学习,我们采用了基于长短期记忆(LSTM)架构的分而治之的学习策略,并明确设计了多个中间目标层。LSTM网络的每个隐藏层都以逐步增加信噪比和减少混响时间为指导。此外,通过对估计的中间目标进行平均处理,进一步提高增强性能。实验表明,所提出的JPL方法不仅提高了语音质量和可理解度的客观度量,而且与直接映射和两阶段即去噪后去噪方法相比,实现了更紧凑的模型设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A LSTM-Based Joint Progressive Learning Framework for Simultaneous Speech Dereverberation and Denoising
We propose a joint progressive learning (JPL) framework of gradually mapping highly noisy and reverberant speech features to less noisy and less reverberant speech features in a layer-by-layer stacking scenario for simultaneous speech denoising and dereverberation. As such layers are easier to learn than mapping highly distorted speech features directly to clean and anechoic speech features, we adopt a divide-and-conquer learning strategy based on a long short-term memory (LSTM) architecture, and explicitly design multiple intermediate target layers. Each hidden layer of the LSTM network is guided by a step-by-step signal-to-noise-ratio (SNR) increase and reverberant time decrease. Moreover, post-processing is applied to further improve the enhancement performance by averaging the estimated intermediate targets. Experiments demonstrate that the proposed JPL approach not only improves objective measures for speech quality and intelligibility, but also achieves a more compact model design when compared to the direct mapping and two-stage, namely denoising followed dereverberation approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信