{"title":"无约束全局优化问题的改进遗传蝙蝠算法","authors":"M. Z. Rehman, K. Z. Zamli, Abdullah B. Nasser","doi":"10.1145/3384544.3384603","DOIUrl":null,"url":null,"abstract":"Metaheuristic search algorithms have been in use for quite a while to optimally solve complex searching problems with ease. Nowadays, nature inspired swarm intelligent algorithms have become quite popular due to their propensity for finding optimal solutions with agility. Genetic algorithm (GA) is successfully applied in several engineering fields for the past four decades but it still has a problem of slow convergence due to its reliability on the initial state of its operators. Therefore, to ensure that GA converges to a global solution, this paper proposed a two-stage improved Genetic Bat algorithm (GBa) in which the GA finds the optimal solution first and then Bat starts from where the GA has converged. This multi-stage optimization ensures that optimal solution is always reached through fine balance in between exploration and exploitation behavior of Genetic algorithm.","PeriodicalId":200246,"journal":{"name":"Proceedings of the 2020 9th International Conference on Software and Computer Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improved Genetic Bat algorithm for Unconstrained Global Optimization Problems\",\"authors\":\"M. Z. Rehman, K. Z. Zamli, Abdullah B. Nasser\",\"doi\":\"10.1145/3384544.3384603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metaheuristic search algorithms have been in use for quite a while to optimally solve complex searching problems with ease. Nowadays, nature inspired swarm intelligent algorithms have become quite popular due to their propensity for finding optimal solutions with agility. Genetic algorithm (GA) is successfully applied in several engineering fields for the past four decades but it still has a problem of slow convergence due to its reliability on the initial state of its operators. Therefore, to ensure that GA converges to a global solution, this paper proposed a two-stage improved Genetic Bat algorithm (GBa) in which the GA finds the optimal solution first and then Bat starts from where the GA has converged. This multi-stage optimization ensures that optimal solution is always reached through fine balance in between exploration and exploitation behavior of Genetic algorithm.\",\"PeriodicalId\":200246,\"journal\":{\"name\":\"Proceedings of the 2020 9th International Conference on Software and Computer Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 9th International Conference on Software and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384544.3384603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 9th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384544.3384603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Genetic Bat algorithm for Unconstrained Global Optimization Problems
Metaheuristic search algorithms have been in use for quite a while to optimally solve complex searching problems with ease. Nowadays, nature inspired swarm intelligent algorithms have become quite popular due to their propensity for finding optimal solutions with agility. Genetic algorithm (GA) is successfully applied in several engineering fields for the past four decades but it still has a problem of slow convergence due to its reliability on the initial state of its operators. Therefore, to ensure that GA converges to a global solution, this paper proposed a two-stage improved Genetic Bat algorithm (GBa) in which the GA finds the optimal solution first and then Bat starts from where the GA has converged. This multi-stage optimization ensures that optimal solution is always reached through fine balance in between exploration and exploitation behavior of Genetic algorithm.