{"title":"难熔等离子体纳米结构的吸收增强和光谱选择性","authors":"Yanhong Wang, Jingzhi Wu","doi":"10.1109/NUSOD.2016.7547056","DOIUrl":null,"url":null,"abstract":"We demonstrate a broadband spectrum absorber using random structures on refractory plasmonic material (Tungsten) resulting in the absorption efficiency over 90% in the wavelength range from 200 nm to 1100 nm. Numerical simulations for the structure with same parameters agree well with the experimental results. Random nanostructures provide more freedom for enhancing absorption and spectrum selectivity than periodic nanostructures.","PeriodicalId":425705,"journal":{"name":"2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorption enhancement and spectrum selectivity of refractory plasmonic nanostructures\",\"authors\":\"Yanhong Wang, Jingzhi Wu\",\"doi\":\"10.1109/NUSOD.2016.7547056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a broadband spectrum absorber using random structures on refractory plasmonic material (Tungsten) resulting in the absorption efficiency over 90% in the wavelength range from 200 nm to 1100 nm. Numerical simulations for the structure with same parameters agree well with the experimental results. Random nanostructures provide more freedom for enhancing absorption and spectrum selectivity than periodic nanostructures.\",\"PeriodicalId\":425705,\"journal\":{\"name\":\"2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2016.7547056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2016.7547056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Absorption enhancement and spectrum selectivity of refractory plasmonic nanostructures
We demonstrate a broadband spectrum absorber using random structures on refractory plasmonic material (Tungsten) resulting in the absorption efficiency over 90% in the wavelength range from 200 nm to 1100 nm. Numerical simulations for the structure with same parameters agree well with the experimental results. Random nanostructures provide more freedom for enhancing absorption and spectrum selectivity than periodic nanostructures.