{"title":"基于相似性的粒子群优化适应度估计进化控制","authors":"Chaoli Sun, J. Zeng, Jeng-Shyang Pan, Yaochu Jin","doi":"10.1109/CIDUE.2013.6595765","DOIUrl":null,"url":null,"abstract":"Evolution control in the surrogate-assisted evolutionary and other meta-heuristic optimization algorithms is essential for their success in efficiently achieving the global optimum. In order to further reduce the number of fitness evaluations, a similarity-based evolution control method is introduced into the fitness estimation strategy for particle swarm optimization (FESPSO) [1]. In the proposed method, the fitness of a particle is either estimated or evaluated, depending on its similarity to the particle whose fitness is known. The performance of the proposed algorithm is examined on eight benchmark problems, and the simulation results show that the proposed algorithm is highly competitive on reducing the number of required fitness evaluations using the computationally expensive fitness function.","PeriodicalId":133590,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Similarity-based evolution control for fitness estimation in particle swarm optimization\",\"authors\":\"Chaoli Sun, J. Zeng, Jeng-Shyang Pan, Yaochu Jin\",\"doi\":\"10.1109/CIDUE.2013.6595765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolution control in the surrogate-assisted evolutionary and other meta-heuristic optimization algorithms is essential for their success in efficiently achieving the global optimum. In order to further reduce the number of fitness evaluations, a similarity-based evolution control method is introduced into the fitness estimation strategy for particle swarm optimization (FESPSO) [1]. In the proposed method, the fitness of a particle is either estimated or evaluated, depending on its similarity to the particle whose fitness is known. The performance of the proposed algorithm is examined on eight benchmark problems, and the simulation results show that the proposed algorithm is highly competitive on reducing the number of required fitness evaluations using the computationally expensive fitness function.\",\"PeriodicalId\":133590,\"journal\":{\"name\":\"2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDUE.2013.6595765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDUE.2013.6595765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Similarity-based evolution control for fitness estimation in particle swarm optimization
Evolution control in the surrogate-assisted evolutionary and other meta-heuristic optimization algorithms is essential for their success in efficiently achieving the global optimum. In order to further reduce the number of fitness evaluations, a similarity-based evolution control method is introduced into the fitness estimation strategy for particle swarm optimization (FESPSO) [1]. In the proposed method, the fitness of a particle is either estimated or evaluated, depending on its similarity to the particle whose fitness is known. The performance of the proposed algorithm is examined on eight benchmark problems, and the simulation results show that the proposed algorithm is highly competitive on reducing the number of required fitness evaluations using the computationally expensive fitness function.