基于传感器位置不确定性的高度数卡尔曼滤波移动定位

Xiaomei Qu
{"title":"基于传感器位置不确定性的高度数卡尔曼滤波移动定位","authors":"Xiaomei Qu","doi":"10.23919/ICIF.2017.8009743","DOIUrl":null,"url":null,"abstract":"This paper investigates the passive localization of a mobile source based on time difference of arrival (TDOA) measurements when the sensor positions suffer from random uncertainties. In the formulation of the dynamic system, the nonlinear measurement function contains random parameters, so the classical high-degree cubature Kalman filtering (CKF) method is unrealizable. We develop an augmented high-degree CKF method to deal with the random parameters, where the system is augmented by incorporating the random sensor positions into the state vector and the number of cubature points is enlarged. Although the proposed augmented high-degree CKF method requires more computational complexity, its estimation accuracy is improved in comparison with that of the classical high-degree CKF method which ignores the sensor position uncertainties. Monte Carlo simulations are used to illustrate the good performance of the proposed method.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile localization via high-degree cubature Kalman filter with sensor position uncertainties\",\"authors\":\"Xiaomei Qu\",\"doi\":\"10.23919/ICIF.2017.8009743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the passive localization of a mobile source based on time difference of arrival (TDOA) measurements when the sensor positions suffer from random uncertainties. In the formulation of the dynamic system, the nonlinear measurement function contains random parameters, so the classical high-degree cubature Kalman filtering (CKF) method is unrealizable. We develop an augmented high-degree CKF method to deal with the random parameters, where the system is augmented by incorporating the random sensor positions into the state vector and the number of cubature points is enlarged. Although the proposed augmented high-degree CKF method requires more computational complexity, its estimation accuracy is improved in comparison with that of the classical high-degree CKF method which ignores the sensor position uncertainties. Monte Carlo simulations are used to illustrate the good performance of the proposed method.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在传感器位置存在随机不确定性的情况下,基于到达时间差(TDOA)测量的移动源被动定位问题。在动态系统的表述中,非线性测量函数中含有随机参数,因此经典的高次稳态卡尔曼滤波(CKF)方法无法实现。我们开发了一种增强的高阶CKF方法来处理随机参数,其中通过将随机传感器位置纳入状态向量来增强系统,并扩大了培养点的数量。本文提出的增广高阶CKF方法虽然计算复杂度较高,但与忽略传感器位置不确定性的经典高阶CKF方法相比,其估计精度有所提高。通过蒙特卡罗仿真验证了所提方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile localization via high-degree cubature Kalman filter with sensor position uncertainties
This paper investigates the passive localization of a mobile source based on time difference of arrival (TDOA) measurements when the sensor positions suffer from random uncertainties. In the formulation of the dynamic system, the nonlinear measurement function contains random parameters, so the classical high-degree cubature Kalman filtering (CKF) method is unrealizable. We develop an augmented high-degree CKF method to deal with the random parameters, where the system is augmented by incorporating the random sensor positions into the state vector and the number of cubature points is enlarged. Although the proposed augmented high-degree CKF method requires more computational complexity, its estimation accuracy is improved in comparison with that of the classical high-degree CKF method which ignores the sensor position uncertainties. Monte Carlo simulations are used to illustrate the good performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信