欧几里德空间中的某些几乎接触超曲面。

M. Okumura
{"title":"欧几里德空间中的某些几乎接触超曲面。","authors":"M. Okumura","doi":"10.2996/KMJ/1138844859","DOIUrl":null,"url":null,"abstract":"An odd-dimensional differentiate manifold M is said to have an almost contact structure or to be an almost contact manifold if the structural group of its tangent bundle is reducible to the product of a unitary group with the 1-dimensional identity group [3]. Recently Sasaki and Hatakeyama [4, 5] proved that an almost contact structure is equivalent to the existence of a set of tensor fields φ, ξ, -η of the type (1, 1), (1, 0) and (0, 1) satisfying the following five conditions:","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1964-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Certain almost contact hypersurfaces in Euclidean spaces.\",\"authors\":\"M. Okumura\",\"doi\":\"10.2996/KMJ/1138844859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An odd-dimensional differentiate manifold M is said to have an almost contact structure or to be an almost contact manifold if the structural group of its tangent bundle is reducible to the product of a unitary group with the 1-dimensional identity group [3]. Recently Sasaki and Hatakeyama [4, 5] proved that an almost contact structure is equivalent to the existence of a set of tensor fields φ, ξ, -η of the type (1, 1), (1, 0) and (0, 1) satisfying the following five conditions:\",\"PeriodicalId\":318148,\"journal\":{\"name\":\"Kodai Mathematical Seminar Reports\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1964-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Seminar Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/KMJ/1138844859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/KMJ/1138844859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

如果奇维微分流形M的切束结构群可约为酉群与一维恒等群之积,则称其具有几乎接触结构,或称其为几乎接触流形[3]。最近Sasaki和Hatakeyama[4,5]证明了几乎接触结构等价于(1,1)、(1,0)和(0,1)型张量场φ, ξ, -η集的存在性,满足以下五个条件:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certain almost contact hypersurfaces in Euclidean spaces.
An odd-dimensional differentiate manifold M is said to have an almost contact structure or to be an almost contact manifold if the structural group of its tangent bundle is reducible to the product of a unitary group with the 1-dimensional identity group [3]. Recently Sasaki and Hatakeyama [4, 5] proved that an almost contact structure is equivalent to the existence of a set of tensor fields φ, ξ, -η of the type (1, 1), (1, 0) and (0, 1) satisfying the following five conditions:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信