纹理分类的稀疏变化模式

M. Tavakolian, F. Hajati, A. Mian, S. Gheisari
{"title":"纹理分类的稀疏变化模式","authors":"M. Tavakolian, F. Hajati, A. Mian, S. Gheisari","doi":"10.1109/DICTA.2013.6691530","DOIUrl":null,"url":null,"abstract":"We present Sparse Variation Pattern (SVP) to extract image features for texture classification. Using the directional derivatives in a local circular neighborhood, SVP captures texture transition patterns in the spatial domain. Unlike conventional feature extraction methods, SVP characterizes the image points taking the co-occurrence of two derivatives in the same direction into account without encoding to binary patterns. Using the directional derivatives, SVP defines a dictionary to solve the classification problem with sparse representation. The proposed texture descriptor was evaluated on the FERET and the LFW face databases, and the PolyU palmprint database. Comparisons with the existing state-of-the-art methods demonstrate that the SVP achieves the overall best performance on all three databases.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Variation Pattern for Texture Classification\",\"authors\":\"M. Tavakolian, F. Hajati, A. Mian, S. Gheisari\",\"doi\":\"10.1109/DICTA.2013.6691530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Sparse Variation Pattern (SVP) to extract image features for texture classification. Using the directional derivatives in a local circular neighborhood, SVP captures texture transition patterns in the spatial domain. Unlike conventional feature extraction methods, SVP characterizes the image points taking the co-occurrence of two derivatives in the same direction into account without encoding to binary patterns. Using the directional derivatives, SVP defines a dictionary to solve the classification problem with sparse representation. The proposed texture descriptor was evaluated on the FERET and the LFW face databases, and the PolyU palmprint database. Comparisons with the existing state-of-the-art methods demonstrate that the SVP achieves the overall best performance on all three databases.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了稀疏变化模式(SVP)来提取图像特征用于纹理分类。利用局部圆形邻域的方向导数,SVP在空间域中捕获纹理过渡模式。与传统的特征提取方法不同,SVP在不编码为二值模式的情况下,考虑了两个导数在同一方向上的共现性来表征图像点。利用方向导数,SVP定义了一个字典来解决稀疏表示的分类问题。在FERET和LFW人脸数据库以及PolyU掌纹数据库上对所提出的纹理描述符进行了评估。与现有最先进方法的比较表明,SVP在所有三个数据库上都实现了最佳的总体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Variation Pattern for Texture Classification
We present Sparse Variation Pattern (SVP) to extract image features for texture classification. Using the directional derivatives in a local circular neighborhood, SVP captures texture transition patterns in the spatial domain. Unlike conventional feature extraction methods, SVP characterizes the image points taking the co-occurrence of two derivatives in the same direction into account without encoding to binary patterns. Using the directional derivatives, SVP defines a dictionary to solve the classification problem with sparse representation. The proposed texture descriptor was evaluated on the FERET and the LFW face databases, and the PolyU palmprint database. Comparisons with the existing state-of-the-art methods demonstrate that the SVP achieves the overall best performance on all three databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信