特征p中的拟不变量和扭曲拟不变量

Michael Ren, Xiaomeng Xu
{"title":"特征p中的拟不变量和扭曲拟不变量","authors":"Michael Ren, Xiaomeng Xu","doi":"10.3842/sigma.2020.107","DOIUrl":null,"url":null,"abstract":"The spaces of quasi-invariant polynomials were introduced by Feigin and Veselov, where their Hilbert series over fields of characteristic 0 were computed. In this paper, we show some partial results and make two conjectures on the Hilbert series of these spaces over fields of positive characteristic. \nOn the other hand, Braverman, Etingof, and Finkelberg introduced the spaces of quasi-invariant polynomials twisted by a monomial. We extend some of their results to the spaces twisted by a smooth function.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quasi-Invariants in Characteristic p and Twisted Quasi-Invariants\",\"authors\":\"Michael Ren, Xiaomeng Xu\",\"doi\":\"10.3842/sigma.2020.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spaces of quasi-invariant polynomials were introduced by Feigin and Veselov, where their Hilbert series over fields of characteristic 0 were computed. In this paper, we show some partial results and make two conjectures on the Hilbert series of these spaces over fields of positive characteristic. \\nOn the other hand, Braverman, Etingof, and Finkelberg introduced the spaces of quasi-invariant polynomials twisted by a monomial. We extend some of their results to the spaces twisted by a smooth function.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2020.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2020.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Feigin和Veselov引入了拟不变多项式空间,计算了它们在特征为0的域上的Hilbert级数。本文给出了这些空间在正特征域上的Hilbert级数的部分结果,并给出了两个猜想。另一方面,Braverman, Etingof和Finkelberg引入了被单项式扭曲的拟不变多项式的空间。我们将它们的一些结果推广到被光滑函数扭曲的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Invariants in Characteristic p and Twisted Quasi-Invariants
The spaces of quasi-invariant polynomials were introduced by Feigin and Veselov, where their Hilbert series over fields of characteristic 0 were computed. In this paper, we show some partial results and make two conjectures on the Hilbert series of these spaces over fields of positive characteristic. On the other hand, Braverman, Etingof, and Finkelberg introduced the spaces of quasi-invariant polynomials twisted by a monomial. We extend some of their results to the spaces twisted by a smooth function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信