Serkan Turkeli, B. S. A. Gazioglu, Kenan Kaan Kurt, Hüseyin Tanzer Atay, Yakup Gorur
{"title":"使用BoW和模糊c均值聚类挖掘相似的放射学报告","authors":"Serkan Turkeli, B. S. A. Gazioglu, Kenan Kaan Kurt, Hüseyin Tanzer Atay, Yakup Gorur","doi":"10.1109/IDAP.2017.8090213","DOIUrl":null,"url":null,"abstract":"Finding similar diagnoses for the same region are vital for patients. In this paper, we aim to find the similarity radiology reports based on bag-of-words (BoW) and Fuzzy C-Means Clustering methods. A double-layer structure is applied. Firstly, extracting features from data BoW method is applied and then Fuzzy C-Means algorithm is performed to cluster the blocks into the similar cluster and the non-similar cluster. 457 radiology reports were examined which were collected from a research and education hospital in Istanbul. Data were tested according to the 23 regions and 137 diagnosis. By the opinion of the radiologist a vocabulary consists of these regions and diagnosis were created. Experimental results on data sets have shown that for the standard documents BoW and Fuzzy C-Means Clustering can be used to find similarity.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining similar radiology reports using BoW and Fuzzy C-means clustering\",\"authors\":\"Serkan Turkeli, B. S. A. Gazioglu, Kenan Kaan Kurt, Hüseyin Tanzer Atay, Yakup Gorur\",\"doi\":\"10.1109/IDAP.2017.8090213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding similar diagnoses for the same region are vital for patients. In this paper, we aim to find the similarity radiology reports based on bag-of-words (BoW) and Fuzzy C-Means Clustering methods. A double-layer structure is applied. Firstly, extracting features from data BoW method is applied and then Fuzzy C-Means algorithm is performed to cluster the blocks into the similar cluster and the non-similar cluster. 457 radiology reports were examined which were collected from a research and education hospital in Istanbul. Data were tested according to the 23 regions and 137 diagnosis. By the opinion of the radiologist a vocabulary consists of these regions and diagnosis were created. Experimental results on data sets have shown that for the standard documents BoW and Fuzzy C-Means Clustering can be used to find similarity.\",\"PeriodicalId\":111721,\"journal\":{\"name\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAP.2017.8090213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining similar radiology reports using BoW and Fuzzy C-means clustering
Finding similar diagnoses for the same region are vital for patients. In this paper, we aim to find the similarity radiology reports based on bag-of-words (BoW) and Fuzzy C-Means Clustering methods. A double-layer structure is applied. Firstly, extracting features from data BoW method is applied and then Fuzzy C-Means algorithm is performed to cluster the blocks into the similar cluster and the non-similar cluster. 457 radiology reports were examined which were collected from a research and education hospital in Istanbul. Data were tested according to the 23 regions and 137 diagnosis. By the opinion of the radiologist a vocabulary consists of these regions and diagnosis were created. Experimental results on data sets have shown that for the standard documents BoW and Fuzzy C-Means Clustering can be used to find similarity.