H. Sattari, A. Takabayashi, Pierre Edinger, P. Verheyen, K. Gylfason, W. Bogaerts, N. Quack
{"title":"硅光子微机电系统在铸造工艺中添加了跌落环谐振器","authors":"H. Sattari, A. Takabayashi, Pierre Edinger, P. Verheyen, K. Gylfason, W. Bogaerts, N. Quack","doi":"10.1117/1.JOM.2.4.044001","DOIUrl":null,"url":null,"abstract":"Abstract. Photonic add-drop filters are crucial components for the implementation of wavelength division multiplexing (WDM) in fiber-optic communication systems. The recent progress in photonic integration has shown the potential to integrate photonic add-drop filters alongside high-performance photonic building blocks on a chip to construct compact and complex photonic-integrated circuits for WDM. Typically, implementations are based on micro-ring resonators with integrated heaters or free carrier dispersion-based modulators to adjust the filter wavelength. However, heaters suffer from high power consumption, and free carriers result in optical absorption losses, limiting the scalability toward very-large-scale circuits. We demonstrate the design, simulation, fabrication, and experimental characterization of a compact add-drop filter based on a vertically movable, MEMS-actuated ring resonator. The MEMS-actuated add-drop filter is implemented in IMEC’s iSiPP50G silicon photonics platform and realized using a short post-processing flow to safely release the suspended MEMS structures in a wafer-level compatible process. The filter exhibits a through port linewidth of ∼1 nm (124.37 GHz) at 1557.1 nm, and it retains a port extinction of 20 dB and a port isolation of >50 dB under 27 V of actuation voltage. The combination of low-power consumption and a compact footprint demonstrates the suitability for very-large-scale integration in photonic circuits.","PeriodicalId":127363,"journal":{"name":"Journal of Optical Microsystems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silicon photonic microelectromechanical systems add-drop ring resonator in a foundry process\",\"authors\":\"H. Sattari, A. Takabayashi, Pierre Edinger, P. Verheyen, K. Gylfason, W. Bogaerts, N. Quack\",\"doi\":\"10.1117/1.JOM.2.4.044001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Photonic add-drop filters are crucial components for the implementation of wavelength division multiplexing (WDM) in fiber-optic communication systems. The recent progress in photonic integration has shown the potential to integrate photonic add-drop filters alongside high-performance photonic building blocks on a chip to construct compact and complex photonic-integrated circuits for WDM. Typically, implementations are based on micro-ring resonators with integrated heaters or free carrier dispersion-based modulators to adjust the filter wavelength. However, heaters suffer from high power consumption, and free carriers result in optical absorption losses, limiting the scalability toward very-large-scale circuits. We demonstrate the design, simulation, fabrication, and experimental characterization of a compact add-drop filter based on a vertically movable, MEMS-actuated ring resonator. The MEMS-actuated add-drop filter is implemented in IMEC’s iSiPP50G silicon photonics platform and realized using a short post-processing flow to safely release the suspended MEMS structures in a wafer-level compatible process. The filter exhibits a through port linewidth of ∼1 nm (124.37 GHz) at 1557.1 nm, and it retains a port extinction of 20 dB and a port isolation of >50 dB under 27 V of actuation voltage. The combination of low-power consumption and a compact footprint demonstrates the suitability for very-large-scale integration in photonic circuits.\",\"PeriodicalId\":127363,\"journal\":{\"name\":\"Journal of Optical Microsystems\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JOM.2.4.044001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.JOM.2.4.044001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon photonic microelectromechanical systems add-drop ring resonator in a foundry process
Abstract. Photonic add-drop filters are crucial components for the implementation of wavelength division multiplexing (WDM) in fiber-optic communication systems. The recent progress in photonic integration has shown the potential to integrate photonic add-drop filters alongside high-performance photonic building blocks on a chip to construct compact and complex photonic-integrated circuits for WDM. Typically, implementations are based on micro-ring resonators with integrated heaters or free carrier dispersion-based modulators to adjust the filter wavelength. However, heaters suffer from high power consumption, and free carriers result in optical absorption losses, limiting the scalability toward very-large-scale circuits. We demonstrate the design, simulation, fabrication, and experimental characterization of a compact add-drop filter based on a vertically movable, MEMS-actuated ring resonator. The MEMS-actuated add-drop filter is implemented in IMEC’s iSiPP50G silicon photonics platform and realized using a short post-processing flow to safely release the suspended MEMS structures in a wafer-level compatible process. The filter exhibits a through port linewidth of ∼1 nm (124.37 GHz) at 1557.1 nm, and it retains a port extinction of 20 dB and a port isolation of >50 dB under 27 V of actuation voltage. The combination of low-power consumption and a compact footprint demonstrates the suitability for very-large-scale integration in photonic circuits.