基于迁移学习的眼底图像糖尿病视网膜病变分类方法

A. Pandey, S. Mishra
{"title":"基于迁移学习的眼底图像糖尿病视网膜病变分类方法","authors":"A. Pandey, S. Mishra","doi":"10.23883/ijrter.2019.5084.cga0r","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is a major microvascular complication of diabetes. Around 95 million individuals worldwide suffer from DR. Regular testing of fundus images and early identification of initial diabetic retinopathy symptoms, namely microaneurysms and hemorrhages, are essential to decrease vision impairment possibilities. This research work is focused on the detection and classification of fundus images of diabetic retinopathy. In this research work, we have proposed a deep learning-based method to classify diabetic retinopathy fundus images into positive (diabetic) class and negative (normal) class. The convolutional neural network is recently most popular in the computer vision for pattern recognition and classification. In this work we have used pre-trained ResNet50 for the fundus image classification. ResNet50 has amazing power to extract robust and discriminating features from the images for diagnosis. The evaluate the performances of the proposed approach we use publically available Messidor dataset. The proposed approach achieves accuracy of 91.78 % and sensitivity of 94.68 %.","PeriodicalId":143099,"journal":{"name":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning Based Approach for Diabetic Retinopathy Classification using Fundus Images\",\"authors\":\"A. Pandey, S. Mishra\",\"doi\":\"10.23883/ijrter.2019.5084.cga0r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) is a major microvascular complication of diabetes. Around 95 million individuals worldwide suffer from DR. Regular testing of fundus images and early identification of initial diabetic retinopathy symptoms, namely microaneurysms and hemorrhages, are essential to decrease vision impairment possibilities. This research work is focused on the detection and classification of fundus images of diabetic retinopathy. In this research work, we have proposed a deep learning-based method to classify diabetic retinopathy fundus images into positive (diabetic) class and negative (normal) class. The convolutional neural network is recently most popular in the computer vision for pattern recognition and classification. In this work we have used pre-trained ResNet50 for the fundus image classification. ResNet50 has amazing power to extract robust and discriminating features from the images for diagnosis. The evaluate the performances of the proposed approach we use publically available Messidor dataset. The proposed approach achieves accuracy of 91.78 % and sensitivity of 94.68 %.\",\"PeriodicalId\":143099,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23883/ijrter.2019.5084.cga0r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23883/ijrter.2019.5084.cga0r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病视网膜病变(DR)是糖尿病的主要微血管并发症。全世界约有9500万人患有糖尿病视网膜病变。定期检查眼底图像和早期识别糖尿病视网膜病变的初始症状,即微动脉瘤和出血,对于减少视力损害的可能性至关重要。本课题主要研究糖尿病视网膜病变眼底图像的检测与分类。在本研究中,我们提出了一种基于深度学习的方法,将糖尿病视网膜病变眼底图像分为阳性(糖尿病)类和阴性(正常)类。卷积神经网络是近年来计算机视觉中最流行的模式识别和分类方法。在这项工作中,我们使用预训练的ResNet50进行眼底图像分类。ResNet50具有惊人的能力,可以从图像中提取鲁棒性和区别性特征进行诊断。我们使用公开的Messidor数据集来评估所提出方法的性能。该方法的准确率为91.78%,灵敏度为94.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning Based Approach for Diabetic Retinopathy Classification using Fundus Images
Diabetic retinopathy (DR) is a major microvascular complication of diabetes. Around 95 million individuals worldwide suffer from DR. Regular testing of fundus images and early identification of initial diabetic retinopathy symptoms, namely microaneurysms and hemorrhages, are essential to decrease vision impairment possibilities. This research work is focused on the detection and classification of fundus images of diabetic retinopathy. In this research work, we have proposed a deep learning-based method to classify diabetic retinopathy fundus images into positive (diabetic) class and negative (normal) class. The convolutional neural network is recently most popular in the computer vision for pattern recognition and classification. In this work we have used pre-trained ResNet50 for the fundus image classification. ResNet50 has amazing power to extract robust and discriminating features from the images for diagnosis. The evaluate the performances of the proposed approach we use publically available Messidor dataset. The proposed approach achieves accuracy of 91.78 % and sensitivity of 94.68 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信