端到端多层次对话行为识别

Eugénio Ribeiro, Ricardo Ribeiro, David Martins de Matos
{"title":"端到端多层次对话行为识别","authors":"Eugénio Ribeiro, Ricardo Ribeiro, David Martins de Matos","doi":"10.21437/IBERSPEECH.2018-63","DOIUrl":null,"url":null,"abstract":"The three-level dialog act annotation scheme of the DIHANA corpus poses a multi-level classification problem in which the bottom levels allow multiple or no labels for a single segment. We approach automatic dialog act recognition on the three levels using an end-to-end approach, in order to implicitly capture relations between them. Our deep neural network classifier uses a combination of word- and character-based segment representation approaches, together with a summary of the dialog history and information concerning speaker changes. We show that it is important to specialize the generic segment representation in order to capture the most relevant information for each level. On the other hand, the summary of the dialog history should combine information from the three levels to capture de-pendencies between them. Furthermore, the labels generated for each level help in the prediction of those of the lower levels. Overall, we achieve results which surpass those of our previous approach using the hierarchical combination of three independent per-level classifiers. Furthermore, the results even surpass the results achieved on the simplified version of the problem approached by previous studies, which neglected the multi-label nature of the bottom levels and only considered the label combinations present in the corpus.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"End-to-End Multi-Level Dialog Act Recognition\",\"authors\":\"Eugénio Ribeiro, Ricardo Ribeiro, David Martins de Matos\",\"doi\":\"10.21437/IBERSPEECH.2018-63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The three-level dialog act annotation scheme of the DIHANA corpus poses a multi-level classification problem in which the bottom levels allow multiple or no labels for a single segment. We approach automatic dialog act recognition on the three levels using an end-to-end approach, in order to implicitly capture relations between them. Our deep neural network classifier uses a combination of word- and character-based segment representation approaches, together with a summary of the dialog history and information concerning speaker changes. We show that it is important to specialize the generic segment representation in order to capture the most relevant information for each level. On the other hand, the summary of the dialog history should combine information from the three levels to capture de-pendencies between them. Furthermore, the labels generated for each level help in the prediction of those of the lower levels. Overall, we achieve results which surpass those of our previous approach using the hierarchical combination of three independent per-level classifiers. Furthermore, the results even surpass the results achieved on the simplified version of the problem approached by previous studies, which neglected the multi-label nature of the bottom levels and only considered the label combinations present in the corpus.\",\"PeriodicalId\":115963,\"journal\":{\"name\":\"IberSPEECH Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IberSPEECH Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/IBERSPEECH.2018-63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/IBERSPEECH.2018-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

DIHANA语料库的三层对话行为注释方案提出了一个多级分类问题,其中底层允许对单个片段进行多个标签或不进行标签。我们使用端到端方法在三个层次上实现自动对话行为识别,以便隐式捕获它们之间的关系。我们的深度神经网络分类器结合了基于单词和字符的片段表示方法,以及对话历史和说话人变化信息的总结。我们表明,为了捕获每个级别最相关的信息,对通用段表示进行专门化是很重要的。另一方面,对话历史的摘要应该结合来自三个级别的信息,以捕获它们之间的依赖关系。此外,为每个级别生成的标签有助于预测较低级别的标签。总的来说,我们获得的结果超过了我们以前使用三个独立的每层分类器的分层组合的方法。此外,该结果甚至超过了以往研究所处理问题的简化版本所取得的结果,后者忽略了底层的多标签性质,只考虑了语料库中存在的标签组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-End Multi-Level Dialog Act Recognition
The three-level dialog act annotation scheme of the DIHANA corpus poses a multi-level classification problem in which the bottom levels allow multiple or no labels for a single segment. We approach automatic dialog act recognition on the three levels using an end-to-end approach, in order to implicitly capture relations between them. Our deep neural network classifier uses a combination of word- and character-based segment representation approaches, together with a summary of the dialog history and information concerning speaker changes. We show that it is important to specialize the generic segment representation in order to capture the most relevant information for each level. On the other hand, the summary of the dialog history should combine information from the three levels to capture de-pendencies between them. Furthermore, the labels generated for each level help in the prediction of those of the lower levels. Overall, we achieve results which surpass those of our previous approach using the hierarchical combination of three independent per-level classifiers. Furthermore, the results even surpass the results achieved on the simplified version of the problem approached by previous studies, which neglected the multi-label nature of the bottom levels and only considered the label combinations present in the corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信