薄壁环在不同边界条件下的自由振动特性

Javad Mohammad Abedinilaksar, Jianming Yang
{"title":"薄壁环在不同边界条件下的自由振动特性","authors":"Javad Mohammad Abedinilaksar, Jianming Yang","doi":"10.32393/csme.2020.1164","DOIUrl":null,"url":null,"abstract":"—This paper investigates the natural frequencies of a thin-walled Euler-Bernoulli ring under different boundary conditions with an analytical method. The free in-plane vibration problem of the system is solved in this work and analytical results are validated with numerical solutions obtained from simulations done in ABAQUS package. Comparing the cases of hinged and fixed supports, both analytical and FEM methods confirmed that the natural frequencies for the case of having fixed supports are considerably higher.","PeriodicalId":184087,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 3","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Free Vibration Characteristics of a Thin-Walled Ring Under Different Boundary Conditions\",\"authors\":\"Javad Mohammad Abedinilaksar, Jianming Yang\",\"doi\":\"10.32393/csme.2020.1164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—This paper investigates the natural frequencies of a thin-walled Euler-Bernoulli ring under different boundary conditions with an analytical method. The free in-plane vibration problem of the system is solved in this work and analytical results are validated with numerical solutions obtained from simulations done in ABAQUS package. Comparing the cases of hinged and fixed supports, both analytical and FEM methods confirmed that the natural frequencies for the case of having fixed supports are considerably higher.\",\"PeriodicalId\":184087,\"journal\":{\"name\":\"Progress in Canadian Mechanical Engineering. Volume 3\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Canadian Mechanical Engineering. Volume 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32393/csme.2020.1164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Canadian Mechanical Engineering. Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32393/csme.2020.1164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文用解析方法研究了薄壁欧拉-伯努利环在不同边界条件下的固有频率。本文对系统的自由面内振动问题进行了求解,并利用ABAQUS软件对分析结果进行了数值验证。通过比较铰链支承和固定支承的情况,分析方法和有限元方法都证实了固定支承情况下的固有频率要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free Vibration Characteristics of a Thin-Walled Ring Under Different Boundary Conditions
—This paper investigates the natural frequencies of a thin-walled Euler-Bernoulli ring under different boundary conditions with an analytical method. The free in-plane vibration problem of the system is solved in this work and analytical results are validated with numerical solutions obtained from simulations done in ABAQUS package. Comparing the cases of hinged and fixed supports, both analytical and FEM methods confirmed that the natural frequencies for the case of having fixed supports are considerably higher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信