封闭表面上截断粒子轨迹的概率重建

Yunjiao Lu, P. Hodara, C. Kervrann, A. Trubuil
{"title":"封闭表面上截断粒子轨迹的概率重建","authors":"Yunjiao Lu, P. Hodara, C. Kervrann, A. Trubuil","doi":"10.1137/20M1333742","DOIUrl":null,"url":null,"abstract":"Investigation of dynamic processes in cell biology very often relies on the observation in two dimensions of 3D biological processes. Consequently, the data are partial and statistical methods and models are required to recover the parameters describing the dynamical processes. In the case of molecules moving over the 3D surface, such as proteins on walls of bacteria cell, a large portion of the 3D surface is not observed in 2D-time microscopy. It follows that biomolecules may disappear for a period of time in a region of interest, and then reappear later. Assuming Brownian motion with drift, we address the mathematical problem of the reconstruction of biomolecules trajectories on a cylindrical surface. A subregion of the cylinder is typically recorded during the observation period, and biomolecules may appear or disappear in any place of the 3D surface. The performance of the method is demonstrated on simulated particle trajectories that mimic MreB protein dynamics observed in 2D time-lapse fluorescence microscopy in rod-shaped bacteria.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Reconstruction of Truncated Particle Trajectories on a Closed Surface\",\"authors\":\"Yunjiao Lu, P. Hodara, C. Kervrann, A. Trubuil\",\"doi\":\"10.1137/20M1333742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigation of dynamic processes in cell biology very often relies on the observation in two dimensions of 3D biological processes. Consequently, the data are partial and statistical methods and models are required to recover the parameters describing the dynamical processes. In the case of molecules moving over the 3D surface, such as proteins on walls of bacteria cell, a large portion of the 3D surface is not observed in 2D-time microscopy. It follows that biomolecules may disappear for a period of time in a region of interest, and then reappear later. Assuming Brownian motion with drift, we address the mathematical problem of the reconstruction of biomolecules trajectories on a cylindrical surface. A subregion of the cylinder is typically recorded during the observation period, and biomolecules may appear or disappear in any place of the 3D surface. The performance of the method is demonstrated on simulated particle trajectories that mimic MreB protein dynamics observed in 2D time-lapse fluorescence microscopy in rod-shaped bacteria.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20M1333742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1333742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞生物学中动态过程的研究往往依赖于对三维生物过程的二维观察。因此,数据是局部的,需要统计方法和模型来恢复描述动态过程的参数。在分子在三维表面上移动的情况下,如细菌细胞壁上的蛋白质,3D表面的很大一部分在二维时间显微镜下是观察不到的。因此,生物分子可能会在感兴趣的区域消失一段时间,然后再出现。假设具有漂移的布朗运动,我们解决了在圆柱形表面上重建生物分子轨迹的数学问题。在观察期间,通常记录圆柱体的一个子区域,生物分子可能在3D表面的任何地方出现或消失。该方法的性能在模拟颗粒轨迹上得到了证明,模拟了在棒状细菌的二维延时荧光显微镜中观察到的MreB蛋白动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Reconstruction of Truncated Particle Trajectories on a Closed Surface
Investigation of dynamic processes in cell biology very often relies on the observation in two dimensions of 3D biological processes. Consequently, the data are partial and statistical methods and models are required to recover the parameters describing the dynamical processes. In the case of molecules moving over the 3D surface, such as proteins on walls of bacteria cell, a large portion of the 3D surface is not observed in 2D-time microscopy. It follows that biomolecules may disappear for a period of time in a region of interest, and then reappear later. Assuming Brownian motion with drift, we address the mathematical problem of the reconstruction of biomolecules trajectories on a cylindrical surface. A subregion of the cylinder is typically recorded during the observation period, and biomolecules may appear or disappear in any place of the 3D surface. The performance of the method is demonstrated on simulated particle trajectories that mimic MreB protein dynamics observed in 2D time-lapse fluorescence microscopy in rod-shaped bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信