利用高光谱图像的低阶特性:技术概述

Hongyan Zhang, Wei He, Wenzi Liao, Renbo Luo, Liangpei Zhang, A. Pižurica
{"title":"利用高光谱图像的低阶特性:技术概述","authors":"Hongyan Zhang, Wei He, Wenzi Liao, Renbo Luo, Liangpei Zhang, A. Pižurica","doi":"10.1109/WHISPERS.2016.8071731","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSIs) often suffer from various annoying degradations, which poses huge challenges for the practical applications. Fortunately, clean HSI is intrinsically low-rank, which opens up a broad category of HSI processing and analysis methods with high robustness against the complicated mixture of various noises and outliers. Based on the low rank property of HSI, this paper provides a comprehensive review on restoration, multiangle registration and unmixing methods for HSIs developed very recently, and insights for further investigations.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the low-rank property of hyperspectral imagery: A technical overview\",\"authors\":\"Hongyan Zhang, Wei He, Wenzi Liao, Renbo Luo, Liangpei Zhang, A. Pižurica\",\"doi\":\"10.1109/WHISPERS.2016.8071731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images (HSIs) often suffer from various annoying degradations, which poses huge challenges for the practical applications. Fortunately, clean HSI is intrinsically low-rank, which opens up a broad category of HSI processing and analysis methods with high robustness against the complicated mixture of various noises and outliers. Based on the low rank property of HSI, this paper provides a comprehensive review on restoration, multiangle registration and unmixing methods for HSIs developed very recently, and insights for further investigations.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像经常受到各种令人烦恼的图像退化的困扰,这给实际应用带来了巨大的挑战。幸运的是,干净的恒指本质上是低秩的,这为恒指处理和分析方法开辟了一个广泛的类别,对各种噪声和异常值的复杂混合具有高鲁棒性。基于HSI的低阶特性,本文对近年来发展的HSI恢复、多角度配准和解混方法进行了综述,并对进一步研究提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting the low-rank property of hyperspectral imagery: A technical overview
Hyperspectral images (HSIs) often suffer from various annoying degradations, which poses huge challenges for the practical applications. Fortunately, clean HSI is intrinsically low-rank, which opens up a broad category of HSI processing and analysis methods with high robustness against the complicated mixture of various noises and outliers. Based on the low rank property of HSI, this paper provides a comprehensive review on restoration, multiangle registration and unmixing methods for HSIs developed very recently, and insights for further investigations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信