基于上下文的有趣推特推荐框架

Maulik Dang, Sanjay Singh
{"title":"基于上下文的有趣推特推荐框架","authors":"Maulik Dang, Sanjay Singh","doi":"10.1109/INDICON.2016.7838957","DOIUrl":null,"url":null,"abstract":"Social media such as Twitter, Google+, Facebook, etc has an undeniable effect on the way information is stored and processed by us. The information available on the web is abound and hence it is essential to mine the important information and avoid the irrelevant details. Along with this, it is beneficial to consider information that is contextually similar to information related to a particular topic as it provides a big picture. Tweets contains keywords known as hashtags which provide useful information for the purpose of sentiment analysis, named entity recognition, event detection, etc. In this paper, we have analyzed Twitter data based on their hashtags, which is widely used nowadays. We have extracted tweets pertaining to a single keyword and to contextually similar keywords. For the purpose of finding similar words we have used word embeddings that capture contextual information successfully. We have used topic modeling to expose the latent structure of the documents based on probability distribution. The proposed framework helps user to find relevant tweets pertaining to a specific and to contextually similar hashtags.","PeriodicalId":283953,"journal":{"name":"2016 IEEE Annual India Conference (INDICON)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Context based interesting tweet recommendation framework\",\"authors\":\"Maulik Dang, Sanjay Singh\",\"doi\":\"10.1109/INDICON.2016.7838957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media such as Twitter, Google+, Facebook, etc has an undeniable effect on the way information is stored and processed by us. The information available on the web is abound and hence it is essential to mine the important information and avoid the irrelevant details. Along with this, it is beneficial to consider information that is contextually similar to information related to a particular topic as it provides a big picture. Tweets contains keywords known as hashtags which provide useful information for the purpose of sentiment analysis, named entity recognition, event detection, etc. In this paper, we have analyzed Twitter data based on their hashtags, which is widely used nowadays. We have extracted tweets pertaining to a single keyword and to contextually similar keywords. For the purpose of finding similar words we have used word embeddings that capture contextual information successfully. We have used topic modeling to expose the latent structure of the documents based on probability distribution. The proposed framework helps user to find relevant tweets pertaining to a specific and to contextually similar hashtags.\",\"PeriodicalId\":283953,\"journal\":{\"name\":\"2016 IEEE Annual India Conference (INDICON)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Annual India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2016.7838957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Annual India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2016.7838957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Twitter、Google+、Facebook等社交媒体对我们存储和处理信息的方式产生了不可否认的影响。网络上的信息是丰富的,因此有必要挖掘重要的信息,避免不相关的细节。与此同时,考虑与特定主题相关的信息在上下文中相似的信息是有益的,因为它提供了一个大局。推文包含被称为标签的关键字,它为情感分析、命名实体识别、事件检测等提供有用的信息。在本文中,我们分析了Twitter的数据,基于他们的标签,这是目前广泛使用的。我们已经提取了有关单个关键字和上下文相似的关键字的推文。为了找到相似的单词,我们使用了成功捕获上下文信息的单词嵌入。我们利用主题建模,基于概率分布来揭示文档的潜在结构。提议的框架可以帮助用户找到与特定和上下文相似的标签相关的推文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context based interesting tweet recommendation framework
Social media such as Twitter, Google+, Facebook, etc has an undeniable effect on the way information is stored and processed by us. The information available on the web is abound and hence it is essential to mine the important information and avoid the irrelevant details. Along with this, it is beneficial to consider information that is contextually similar to information related to a particular topic as it provides a big picture. Tweets contains keywords known as hashtags which provide useful information for the purpose of sentiment analysis, named entity recognition, event detection, etc. In this paper, we have analyzed Twitter data based on their hashtags, which is widely used nowadays. We have extracted tweets pertaining to a single keyword and to contextually similar keywords. For the purpose of finding similar words we have used word embeddings that capture contextual information successfully. We have used topic modeling to expose the latent structure of the documents based on probability distribution. The proposed framework helps user to find relevant tweets pertaining to a specific and to contextually similar hashtags.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信