雾云环境下最大跨度优化的带宽分配算法:监控应用

Bentabet Dougani, Abdeslem Dennai
{"title":"雾云环境下最大跨度优化的带宽分配算法:监控应用","authors":"Bentabet Dougani, Abdeslem Dennai","doi":"10.56415/csjm.v31.03","DOIUrl":null,"url":null,"abstract":"Fog computing technology has emerged to handle a large amount of data generated by the Internet of Things (IoT) terminals and cope with latency-sensitive application requests by allocating computation and storage resources at the edge of the Internet. In many IoT applications, the data acquisition procedures must apply the Directed Acyclic Graph (DAG) to get real-time results. The principal goal of DAG scheduling is to reduce total completion time without breaking priority constraints by properly allocating tasks to processors and arranging task execution sequencing. In this paper, we propose a bandwidth-aware workflow allocation (BW-AWA) that schedules tasks by priority to the resource and optimizes the total execution time (Makespan) in the entire computing system. The task allocation process needs to consider the dependency between tasks. The proposed approach is tested with a monitoring application case study, and the results are compared to well-known approaches to demonstrate its effectiveness in optimizing the Makespan.\n","PeriodicalId":262087,"journal":{"name":"Comput. Sci. J. Moldova","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bandwidth Allocation Algorithm for Makespan Optimization in a Fog-Cloud Environment: Monitoring Application\",\"authors\":\"Bentabet Dougani, Abdeslem Dennai\",\"doi\":\"10.56415/csjm.v31.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog computing technology has emerged to handle a large amount of data generated by the Internet of Things (IoT) terminals and cope with latency-sensitive application requests by allocating computation and storage resources at the edge of the Internet. In many IoT applications, the data acquisition procedures must apply the Directed Acyclic Graph (DAG) to get real-time results. The principal goal of DAG scheduling is to reduce total completion time without breaking priority constraints by properly allocating tasks to processors and arranging task execution sequencing. In this paper, we propose a bandwidth-aware workflow allocation (BW-AWA) that schedules tasks by priority to the resource and optimizes the total execution time (Makespan) in the entire computing system. The task allocation process needs to consider the dependency between tasks. The proposed approach is tested with a monitoring application case study, and the results are compared to well-known approaches to demonstrate its effectiveness in optimizing the Makespan.\\n\",\"PeriodicalId\":262087,\"journal\":{\"name\":\"Comput. Sci. J. Moldova\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Sci. J. Moldova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56415/csjm.v31.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Sci. J. Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/csjm.v31.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雾计算技术的出现是为了处理物联网终端产生的大量数据,并通过在互联网边缘分配计算和存储资源来应对对延迟敏感的应用请求。在许多物联网应用中,数据采集过程必须应用有向无环图(DAG)来获得实时结果。DAG调度的主要目标是通过适当地将任务分配给处理器并安排任务执行顺序,在不破坏优先级约束的情况下减少总完成时间。在本文中,我们提出了一种带宽感知的工作流分配(BW-AWA)方法,该方法根据资源的优先级调度任务,并优化整个计算系统的总执行时间(Makespan)。任务分配过程需要考虑任务之间的依赖关系。通过监测应用案例研究对所提出的方法进行了测试,并将结果与已知方法进行了比较,以证明其在优化Makespan方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bandwidth Allocation Algorithm for Makespan Optimization in a Fog-Cloud Environment: Monitoring Application
Fog computing technology has emerged to handle a large amount of data generated by the Internet of Things (IoT) terminals and cope with latency-sensitive application requests by allocating computation and storage resources at the edge of the Internet. In many IoT applications, the data acquisition procedures must apply the Directed Acyclic Graph (DAG) to get real-time results. The principal goal of DAG scheduling is to reduce total completion time without breaking priority constraints by properly allocating tasks to processors and arranging task execution sequencing. In this paper, we propose a bandwidth-aware workflow allocation (BW-AWA) that schedules tasks by priority to the resource and optimizes the total execution time (Makespan) in the entire computing system. The task allocation process needs to consider the dependency between tasks. The proposed approach is tested with a monitoring application case study, and the results are compared to well-known approaches to demonstrate its effectiveness in optimizing the Makespan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信